SWVRC Fianance, Loans & Debt

Main Menu

  • Home
  • Coefficient of Variation
  • Temporal
  • Nasdaq
  • MSCIWI
  • Debt

SWVRC Fianance, Loans & Debt

Header Banner

SWVRC Fianance, Loans & Debt

  • Home
  • Coefficient of Variation
  • Temporal
  • Nasdaq
  • MSCIWI
  • Debt
Coefficient of Variation
Home›Coefficient of Variation›Surface functionalization of graphene nanosheet with poly (l-histidine) and its application in drug delivery: covalent vs non-covalent approaches

Surface functionalization of graphene nanosheet with poly (l-histidine) and its application in drug delivery: covalent vs non-covalent approaches

By Maureen Bellinger
November 9, 2022
0
0
  • Gao, P., Nicolas, J. & Ha-Duong, T. Supramolecular organization of polymer prodrug nanoparticles revealed by coarse-grained simulations. J. Am. Chem. Soc. 143, 17412–17423 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Yesylevskyy, S., Rivel, T. & Ramseyer, C. Curvature increases permeability of the plasma membrane for ions, water and the anti-cancer drugs cisplatin and gemcitabine. Sci. Rep. 9, 1–8 (2019).

    CAS 

    Google Scholar 

  • Jiang, P.-H., Motoo, Y., Sawabu, N. & Minamoto, T. Effect of gemcitabine on the expression of apoptosis-related genes in human pancreatic cancer cells. World J. Gastroenterol: WJG 12, 1597 (2006).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Singhal, N. et al. SBP-101, a polyamine metabolic inhibitor, administered in combination with gemcitabine and nab-paclitaxel, shows signals of efficacy as first-line treatment for subjects with metastatic pancreatic ductal adenocarcinoma. (2021).

  • Santos, J. et al. Computational and experimental assessments of magnolol as a neuroprotective agent and utilization of UiO-66 (Zr) as Its drug delivery system. ACS Omega 6, 24382–24396 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zeng, S. et al. Computer simulations on a pH-responsive anticancer drug delivery system using zwitterion-grafted polyamidoamine dendrimer unimolecular micelles. Langmuir 37, 1225–1234 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Lu, B. et al. “Smart” composite microneedle patch stabilizes glucagon and prevents nocturnal hypoglycemia: Experimental studies and molecular dynamics simulation. ACS Appl. Mater. Interfaces (2022).

  • Ansari, M., Moradi, S. & Shahlaei, M. A molecular dynamics simulation study on the mechanism of loading of gemcitabine and camptothecin in poly lactic-co-glycolic acid as a nano drug delivery system. J. Mol. Liq. 269, 110–118 (2018).

    CAS 

    Google Scholar 

  • Tiwari, G. et al. Drug delivery systems: An updated review. Int. J. Pharm. Invest. 2, 2 (2012).

    Google Scholar 

  • Razavi, L., Raissi, H., Hashemzadeh, H. & Farzad, F. Molecular insights into the loading and dynamics of anticancer drugs on silicene and folic acid-conjugated silicene nanosheets: DFT calculation and MD simulation. J. Biomol. Struct. Dyn. 39, 3892–3899 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Perli, G. et al. Self-assembly of a triazolylferrocenyl dendrimer in water yields nontraditional intrinsic green fluorescent vesosomes for nanotheranostic applications. J. Am. Chem. Soc. 143, 12948–12954 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Yang, G. et al. An implantable active-targeting micelle-in-nanofiber device for efficient and safe cancer therapy. ACS Nano 9, 1161–1174 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Vilar, G., Tulla-Puche, J. & Albericio, F. Polymers and drug delivery systems. Curr. Drug Deliv. 9, 367–394 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • Shariatinia, Z. & Mazloom-Jalali, A. Molecular dynamics simulations on chitosan/graphene nanocomposites as anticancer drug delivery using systems. Chin. J. Phys. 66, 362–382 (2020).

    CAS 

    Google Scholar 

  • Lin, K. & Zhao, Y.-P. Entropy and enthalpy changes during adsorption and displacement of shale gas. Energy 221, 119854 (2021).

    CAS 

    Google Scholar 

  • Lin, K. & Zhao, Y.-P. Mechanical peeling of van der Waals heterostructures: Theory and simulations. Extreme Mech. Lett. 30, 100501 (2019).

    Google Scholar 

  • Fu, L. et al. Graphene-based electrochemical sensors for antibiotic detection in water, food and soil: A scientometric analysis in CiteSpace (2011–2021). Chemosphere 134127 (2022).

  • Sun, J. et al. Insights into the mechanism for vertical graphene growth by plasma-enhanced chemical vapor deposition. ACS Appl. Mater. Interfaces (2022).

  • Lin, K. & Yu, T. Debonding simulation of fibre-matrix interfaces of FRP composites with reactive force field. Constr. Build. Mater. 312, 125304 (2021).

    CAS 

    Google Scholar 

  • Chen, M.-L., He, Y.-J., Chen, X.-W. & Wang, J.-H. Quantum-dot-conjugated graphene as a probe for simultaneous cancer-targeted fluorescent imaging, tracking, and monitoring drug delivery. Bioconjug. Chem. 24, 387–397 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Xiang, S. et al. A bibliometric analysis of graphene in acetaminophen detection: Current status, development, and future directions. Chemosphere 306, 135517 (2022).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Itoo, A. M. et al. Multifunctional graphene oxide nanoparticles for drug delivery in cancer. J. Control. Release 350, 26–59 (2022).

    CAS 
    PubMed 

    Google Scholar 

  • Wang, J., Wei, Y., Shi, X. & Gao, H. Cellular entry of graphene nanosheets: The role of thickness, oxidation and surface adsorption. RSC Adv. 3, 15776–15782 (2013).

    ADS 
    CAS 

    Google Scholar 

  • Song, S. et al. Biomedical application of graphene: from drug delivery, tumor therapy, to theranostics. Colloids Surf., B 185, 110596 (2020).

    CAS 

    Google Scholar 

  • Nasrollahi, F., Varshosaz, J., Khodadadi, A. A., Lim, S. & Jahanian-Najafabadi, A. Targeted delivery of docetaxel by use of transferrin/poly (allylamine hydrochloride)-functionalized graphene oxide nanocarrier. ACS Appl. Mater. Interfaces. 8, 13282–13293 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Jo, G. et al. The application of graphene as electrodes in electrical and optical devices. Nanotechnology 23, 112001 (2012).

    ADS 
    PubMed 

    Google Scholar 

  • Zhou, X. & Liang, F. Application of graphene/graphene oxide in biomedicine and biotechnology. Curr. Med. Chem. 21, 855–869 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Chung, C. et al. Biomedical applications of graphene and graphene oxide. Acc. Chem. Res. 46, 2211–2224 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Zhu, X., Liu, Y., Li, P., Nie, Z. & Li, J. Applications of graphene and its derivatives in intracellular biosensing and bioimaging. Analyst 141, 4541–4553 (2016).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Shin, S. R. et al. Graphene-based materials for tissue engineering. Adv. Drug Deliv. Rev. 105, 255–274 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kim, G. M., Bae, Y. H. & Jo, W. H. pH-induced Micelle Formation of Poly (histidine-co-phenylalanine)-block-Poly (ethylene glycol) in Aqueous Media. Macromol. Biosci. 5, 1118–1124 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • Tang, Y. et al. Enhanced interlayer interaction and second-harmonic-generation response in a KBe2BO3F2-type inorganic–organic hybrid zinc borate. Inorg. Chem. (2022).

  • Zhang, L. et al. Surface-assisted assembly of a histidine-rich lipidated peptide for simultaneous exfoliation of graphite and functionalization of graphene nanosheets. Nanoscale 11, 2999–3012 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Moghadam, S. & Larson, R. G. Assessing the efficacy of poly (N-isopropylacrylamide) for drug delivery applications using molecular dynamics simulations. Mol. Pharm. 14, 478–491 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Hansson, T., Oostenbrink, C. & van Gunsteren, W. Molecular dynamics simulations. Curr. Opin. Struct. Biol. 12, 190–196 (2002).

    CAS 
    PubMed 

    Google Scholar 

  • Wongpinyochit, T. et al. Unraveling the impact of high-order silk structures on molecular drug binding and release behaviors. J. Phys. Chem. Lett. 10, 4278–4284 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Dama, J. F., Parrinello, M. & Voth, G. A. Well-tempered metadynamics converges asymptotically. Phys. Rev. Lett. 112, 240602 (2014).

    ADS 
    PubMed 

    Google Scholar 

  • Razavi, L., Raissi, H. & Farzad, F. Insights into glyphosate removal efficiency using a new 2D nanomaterial. RSC Adv. 12, 10154–10161 (2022).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Saito, T. & Takano, Y. QM/MM molecular dynamics simulations revealed catalytic mechanism of urease. J. Phys. Chem. B 126, 2087–2097 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ganesh, P. S. et al. Biofilm-associated Agr and Sar quorum sensing systems of Staphylococcus aureus are inhibited by 3-hydroxybenzoic acid derived from Illicium verum. ACS Omega 7, 14653–14665 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, X. et al. Ether-water hybrid electrolyte contributing to excellent Mg ion storage in layered sodium vanadate. ACS Nano 16, 6093–6102 (2022).

    CAS 

    Google Scholar 

  • Cao, Y., Qiao, Y., Cui, S. & Ge, J. Origin of metal cluster tuning enzyme activity at the bio-nano interface. JACS Au 2, 961–971 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Korpelin, V. et al. Addressing dynamics at catalytic heterogeneous interfaces with DFT-MD: Anomalous temperature distributions from commonly used thermostats. J. Phys. Chem. Lett. 13, 2644–2652 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kumar, K., Keshri, S., Bharti, A., Kumar, S. & Mogurampelly, S. Solubility of gases in choline chloride-based deep eutectic solvents from molecular dynamics simulation. Ind. Eng. Chem. Res. 61, 4659–4671 (2022).

    CAS 

    Google Scholar 

  • Pederson, J. P. & McDaniel, J. G. DFT-based QM/MM with particle-mesh Ewald for direct, long-range electrostatic embedding. J. Chem. Phys. 156, 174105 (2022).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Smith, A., Dong, X. & Raghavan, V. An overview of molecular dynamics simulation for food products and processes. Processes 10, 119 (2022).

    CAS 

    Google Scholar 

  • Pei, J. et al. Molecular dynamic simulations and experimental study on pBAMO-b-GAP copolymer/energetic plasticizer mixed systems. FirePhysChem 2, 67–71 (2022).

    Google Scholar 

  • Hunter, M. A., Demir, B., Petersen, C. F. & Searles, D. J. New framework for computing a general local self-diffusion coefficient using statistical mechanics. J. Chem. Theory Comput. (2022).

  • Tang, Z., Liu, Q., Liu, S., Zhao, J. & Zheng, D. Unraveling excited state dynamics and photophysical properties for a series of phenol-quinoline derivatives by controlling hydrogen bond geometry. J. Photochem. Photobiol. A Chem. 113799 (2022).

  • Lee, E. S., Shin, H. J., Na, K. & Bae, Y. H. Poly (l-histidine)–PEG block copolymer micelles and pH-induced destabilization. J. Control. Release 90, 363–374 (2003).

    CAS 
    PubMed 

    Google Scholar 

  • Mahdavi, M., Rahmani, F. & Nouranian, S. Molecular simulation of pH-dependent diffusion, loading, and release of doxorubicin in graphene and graphene oxide drug delivery systems. J. Mater. Chem. B 4, 7441–7451 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Hess, B., Kutzner, C., Van Der Spoel, D. & Lindahl, E. GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theory Comput. 4, 435–447 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • Berendsen, H. J. C., van der Spoel, D. & van Drunen, R. GROMACS: A message-passing parallel molecular dynamics implementation. Comput. Phys. Commun. 91, 43–56 (1995).

    ADS 
    CAS 

    Google Scholar 

  • Bonomi, M. et al. PLUMED: A portable plugin for free-energy calculations with molecular dynamics. Comput. Phys. Commun. 180, 1961–1972 (2009).

    ADS 
    CAS 

    Google Scholar 

  • Murali, A., Lokhande, G., Deo, K. A., Brokesh, A. & Gaharwar, A. K. Emerging 2D nanomaterials for biomedical applications. Mater. Today 50, 276–302 (2021).

    CAS 

    Google Scholar 

  • Maharjan, R. S. et al. Investigation of the Associations between a Nanomaterial’s Microrheology and Toxicology. ACS Omega 7, 13985–13997 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Faizi, A., Kalantar, Z. & Hashemianzadeh, S. M. Drug delivery by SiC nanotubes as nanocarriers for anti-cancer drugs: investigation of drug encapsulation and system stability using molecular dynamics simulation. Mater. Res. Exp. 8, 105012 (2021).

    Google Scholar 

  • Related posts:

    1. Predicting tissue-specific gene expression from complete blood transcriptome
    2. MRI biomarker to foretell LNM in T3 stage rectal carcinoma
    3. Medical Components Related to Excessive Glycemic Variability Outlined by
    4. Significance of RDW in predicting mortality in COVID‐19—An evaluation of 622 circumstances – Soni – – Worldwide Journal of Laboratory Hematology

    Categories

    • Coefficient of Variation
    • Debt
    • MSCIWI
    • Nasdaq
    • Temporal
    • Terms and Conditions
    • Privacy Policy