SWVRC Fianance, Loans & Debt

Main Menu

  • Home
  • Coefficient of Variation
  • Temporal
  • Nasdaq
  • MSCIWI
  • Debt

SWVRC Fianance, Loans & Debt

Header Banner

SWVRC Fianance, Loans & Debt

  • Home
  • Coefficient of Variation
  • Temporal
  • Nasdaq
  • MSCIWI
  • Debt
Coefficient of Variation
Home›Coefficient of Variation›Seasonal variation in wing size and shape of Drosophila melanogaster reveals rapid adaptation to environmental changes

Seasonal variation in wing size and shape of Drosophila melanogaster reveals rapid adaptation to environmental changes

By Maureen Bellinger
August 26, 2022
0
0
  • Roff, D. Optimizing development time in a seasonal environment: the ‘ups and downs’ of clinal variation. Oecologia 45(2), 202–208 (1980).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • Mittelbach, G. G. et al. Evolution and the latitudinal diversity gradient: Speciation, extinction and biogeography. Ecol. Lett. 10(4), 315–331 (2007).

    PubMed 
    Article 

    Google Scholar 

  • Kapun, M., Fabian, D. K., Goudet, J. & Flatt, T. Genomic evidence for adaptive inversion clines in Drosophila melanogaster. Mol. Biol. Evol. 33(5), 1317–1336 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Rajpurohit, S., Zhao, X. & Schmidt, P. S. A resource on latitudinal and altitudinal clines of ecologically relevant phenotypes of the Indian Drosophila. Sci. Data 4(1), 1–6 (2017).

    Article 

    Google Scholar 

  • Hawkins, B. & DeVries, P. J. Altitudinal gradients in the body sizes of Costa Rican butterflies. Acta Oecol. 17, 185–194 (1996).

    Google Scholar 

  • Sørensen, J. G., Norry, F. M., Scannapieco, A. C. & Loeschcke, V. Altitudinal variation for stress resistance traits and thermal adaptation in adult Drosophila buzzatii from the New World. J. Evol. Biol. 18(4), 829–837 (2005).

    PubMed 
    Article 

    Google Scholar 

  • Pitchers, W., Pool, J. E. & Dworkin, I. Altitudinal clinal variation in wing size and shape in African Drosophila melanogaster: one cline or many?. Evolution 67(2), 438–452 (2013).

    PubMed 
    Article 

    Google Scholar 

  • Klepsatel, P., Gáliková, M., Huber, C. D. & Flatt, T. Similarities and differences in altitudinal versus latitudinal variation for morphological traits in Drosophila melanogaster. Evolution 68(5), 1385–1398 (2014).

    PubMed 
    Article 

    Google Scholar 

  • Ayhan, N., Güler, P. & Onder, B. S. Altitudinal variation in lifespan of Drosophila melanogaster populations from the Firtina Valley, northeastern Turkey. J. Therm. Biol. 61, 91–97 (2016).

    PubMed 
    Article 

    Google Scholar 

  • Dobzhansky, T. & Ayala, F. J. Temporal frequency changes of enzyme and chromosomal polymorphisms in natural populations of Drosophila. Proc. Natl. Acad. Sci. USA 70(3), 680–683 (1973).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Williams, C. M. et al. Understanding evolutionary impacts of seasonality: An introduction to the symposium. Integr. Comp. Biol. 57(5), 921–933 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Bergland, A. O., Behrman, E. L., O’Brien, K. R., Schmidt, P. S. & Petrov, D. A. Genomic evidence of rapid and stable adaptive oscillations over seasonal time scales in Drosophila. PLoS Genet. 10(11), e1004775 (2014).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Machado, H. E. et al. Broad geographic sampling reveals the shared basis and environmental correlates of seasonal adaptation in Drosophila. Elife 10, e67577 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Rodrigues, M. F., Vibranovski, M. D. & Cogni, R. Clinal and seasonal changes are correlated in Drosophila melanogaster natural populations. Evolution 75(8), 2042–2054 (2021).

    PubMed 
    Article 

    Google Scholar 

  • Hairston, N. G. & Dillon, T. A. Fluctuating selection and response in a population of freshwater copepods. Evolution 44(7), 1796–1805 (1990).

    PubMed 
    Article 

    Google Scholar 

  • Grant, P. R. & Grant, B. R. Unpredictable evolution in a 30-year study of Darwin’s finches. Science 296(5568), 707–711 (2002).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Brown, C. R., Brown, M. B. & Roche, E. A. Fluctuating viability selection on morphology of cliff swallows is driven by climate. J. Evol. Biol. 26(5), 1129–1142 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Bergland, A. O., Tobler, R., González, J., Schmidt, P. & Petrov, D. Secondary contact and local adaptation contribute to genome-wide patterns of clinal variation in Drosophila melanogaster. Mol. Ecol. 25(5), 1157–1174 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Haldane, J. B. S. & Jayakar, S. D. Polymorphism due to selection of varying direction. J. Genet. 58(2), 237–242 (1963).

    Article 

    Google Scholar 

  • Rhomberg, L. R. & Singh, R. S. Evidence for a link between local and seasonal cycles in gene frequencies and latitudinal gene clines in a cyclic parthenogen. Genetica 78(1), 73–79 (1986).

    Article 

    Google Scholar 

  • Cogni, R. et al. The intensity of selection acting on the couch potato gene—spatial–temporal variation in a diapause cline. Evolution 68, 538–548 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Behrman, E. L., Watson, S. S., O’brien, K. R., Heschel, M. S., & Schmidt, P. S. Seasonal variation in life history traits in two Drosophila species. J. Evol. Biol. 28(9), 1691–1704 (2015).

  • Cogni, R. et al. Variation in Drosophila melanogaster central metabolic genes appears driven by natural selection both within and between populations. Proc. Biol. Sci. 282, 20142688 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wittmann, M. J., Bergland, A. O., Feldman, M. W., Schmidt, P. S. & Petrov, D. A. Seasonally fluctuating selection can maintain polymorphism at many loci via segregation lift. Proc. Natl. Acad. Sci. USA 114(46), E9932–E9941 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Behrman, E. L., et al. Rapid seasonal evolution in innate immunity of wild Drosophila melanogaster. P. Roy. Soc. B Biol. Sci. 285(1870), 20172599 (2018).

  • Rudman, S. M. et al. Microbiome composition shapes rapid genomic adaptation of Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 116(40), 20025–20032 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Dowle, E. J. et al. Genome-wide variation and transcriptional changes in diverse developmental processes underlie the rapid evolution of seasonal adaptation. Proc. Natl. Acad. Sci. USA 117(38), 23960–23969 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Garcia‐Elfring, et al. Using seasonal genomic changes to understand historical adaptation to new environments: Parallel selection on stickleback in highly‐variable estuaries. Mol. Ecol. 30(9), 2054–2064 (2021).

  • Dobzhansky, T. Genetics of natural populations IX. Temporal changes in the composition of populations of Drosophila pseudoobscura. Genetics 28(2), 162 (1943).

  • Dubinin, N. P. & Tiniakov, G. G. Seasonal cycles and the concentration of inversions in populations of Drosophila funebris. Am. Nat. 79(785), 570–572 (1945).

    Article 

    Google Scholar 

  • Stalker, H. D. & Carson, H. L. Seasonal variation in the morphology of Drosophila robusta Sturtevant. Evolution 3(4), 330–343 (1949).

    CAS 
    PubMed 

    Google Scholar 

  • Stalker, H. D. Chromosome studies in wild populations of Drosophila melanogaster. II. Relationship of inversion frequencies to latitude, season, wing-loading and flight activity. Genetics 95(1), 211–223 (1980).

  • Rodriguez-Trelles, F., Alvarez, G. & Zapata, C. Time-series analysis of seasonal changes of the O inversion polymorphism of Drosophila subobscura. Genetics 142(1), 179–187 (1996).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Ananina, G. et al. Chromosomal inversion polymorphism in Drosophila mediopunctata: seasonal, altitudinal, and latitudinal variation. Genet. Mol. Biol. 27, 61–69 (2004).

    Article 

    Google Scholar 

  • Bergmann, K. Über die Verhältnisse der Wärmeökonomie der Thiere zu ihrer Größe. Gottinger Studien 3, 595–708 (1847).

    Google Scholar 

  • Graves, G. R. Bergmann’s rule near the equator: latitudinal clines in body size of an Andean passerine bird. Proc. Natl. Acad. Sci. USA 88(6), 2322–2325 (1991).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Partridge, L. & Coyne, J. A. Bergmann’s rule in ectotherms: Is it adaptive?. Evolution 51(2), 632–635 (1997).

    PubMed 
    Article 

    Google Scholar 

  • Ashton, K. G. Patterns of within-species body size variation of birds: strong evidence for Bergmann’s rule. Global Ecol. Biogeogr. 11(6), 505–523 (2002).

    Article 

    Google Scholar 

  • Hallas, R., Schiffer, M. & Hoffmann, A. A. Clinal variation in Drosophila serrata for stress resistance and body size. Genet. Res. 79(2), 141–148 (2002).

    PubMed 
    Article 

    Google Scholar 

  • Stillwell, R. C., Morse, G. E. & Fox, C. W. Geographic variation in body size and sexual size dimorphism of a seed-feeding beetle. Am. Nat. 170(3), 358–369 (2007).

    PubMed 
    Article 

    Google Scholar 

  • Clauss, M., Dittmann, M. T., Müller, D. W., Meloro, C. & Codron, D. Bergmann′ s rule in mammals: A cross-species interspecific pattern. Oikos 122(10), 1465–1472 (2013).

    Google Scholar 

  • Stearns, S. C. The evolution of life histories (Oxford Univ. Press, 1992).

    Google Scholar 

  • Blackburn, T. M. & Gaston, K. J. Linking patterns in macroecology. J. Anim. Ecol. 70(2), 338–352 (2001).

    Google Scholar 

  • Robertson, F. W. The ecological genetics of growth in Drosophila 6. The genetic correlation between the duration of the larval period and body size in relation to larval diet. Genet. Res. 4(1), 74–92 (1963).

  • Partridge, L., Langelan, R., Fowler, K., Zwaan, B. & French, V. Correlated responses to selection on body size in Drosophila melanogaster. Genet. Res. 74(1), 43–54 (1999).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Partridge, L. & Farquhar, M. Lifetime mating success of male fruitflies (Drosophila melanogaster) is related to their size. Anim. Behav. 31(3), 871–877 (1983).

    Article 

    Google Scholar 

  • Lefranc, A. & Bundgaard, J. The influence of male and female body size on copulation duration and fecundity in Drosophila melanogaster. Hereditas 132(3), 243–247 (2000).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Long, T. A., Pischedda, A., Stewart, A. D. & Rice, W. R. A cost of sexual attractiveness to high-fitness females. PLoS Biol. 7(12), e1000254 (2009).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Partridge, L. & Fowler, K. Direct and correlated responses to selection on age at reproduction in Drosophila melanogaster. Evolution 46(1), 76–91 (1992).

    PubMed 
    Article 

    Google Scholar 

  • Rodriguez, C., Fanara, J. J. & Hasson, E. Inversion polymorphism, longevity, and body size in a natural population of Drosophila buzzatii. Evolution 53(2), 612–620 (1999).

    PubMed 
    Article 

    Google Scholar 

  • Norry, F. M. & Loeschcke, V. Temperature-induced shifts in associations of longevity with body size in Drosophila melanogaster. Evolution 56(2), 299–306 (2002).

    PubMed 
    Article 

    Google Scholar 

  • Karan, D., Dubey, S., Moreteau, B., Parkash, R. & David, J. R. Geographical clines for quantitative traits in natural populations of a tropical Drosophilid: Zaprionus indianus. Genetica 108(1), 91–100 (2000).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Shelomi, M. Where are we now? Bergmann’s rule sensu lato in insects. Am. Nat. 180(4), 511–519 (2012).

    PubMed 
    Article 

    Google Scholar 

  • Blackburn, T. M., Gaston, K. J. & Loder, N. Geographic gradients in body size: a clarification of Bergmann’s rule. Divers. Distrib. 5(4), 165–174 (1999).

    Article 

    Google Scholar 

  • Cavicchi, S., Guerra, D., Natali, V., Pezzoli, C., & Giorgi, G. Temperature‐related divergence in experimental populations of Drosophila melanogaster. II. Correlation between fitness and body dimensions. J. Evol. Biol. 2(4), 235–251 (1989).

  • Partridge, L., Barrie, B., Fowler, K. & French, V. Evolution and development of body size and cell size in Drosophila melanogaster in response to temperature. Evolution 48(4), 1269–1276 (1994).

    PubMed 
    Article 

    Google Scholar 

  • Jones, J. et al. Multiple selection pressures generate adherence to Bergmann’s rule in a Neotropical migratory songbird. J. Biogeogr. 32(10), 1827–1833 (2005).

    Article 

    Google Scholar 

  • Stillwell, R. C., Moya-Laraño, J. & Fox, C. W. Selection does not favor larger body size at lower temperature in a seed-feeding beetle. Evolution 62(10), 2534–2544 (2008).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Imasheva, A. G., Bubli, O. A. & Lazebny, O. E. Variation in wing length in Eurasian natural populations of Drosophila melanogaster. Heredity 72(5), 508–514 (1994).

    PubMed 
    Article 

    Google Scholar 

  • van’t Land, J., P. van Putten, H. Villarroel, A. Kamping & W. van Delden Latitudinal variation in wing length and allele frequencies for Adh and α-Gpdh in populations of Drosophila melanogaster from Ecuador and Chile. Dros. Info. Serv. 76, 156 (1995).

  • Loeschcke, V., Bundgaard, J., & Barker, J. S. F. Variation in body size and life history traits in Drosophila aldrichi and D. buzzatii from a latitudinal cline in eastern Australia. Heredity 85(5), 423–433 (2000).

  • Gilchrist, A. S. & Partridge, L. A comparison of the genetic basis of wing size divergence in three parallel body size clines of Drosophila melanogaster. Genetics 153(4), 1775–1787 (1999).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Turner, T. L., Stewart, A. D., Fields, A. T., Rice, W. R. & Tarone, A. M. Population-based resequencing of experimentally evolved populations reveals the genetic basis of body size variation in Drosophila melanogaster. PLoS Genet. 7(3), e1001336 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Pitchers, W. et al. A multivariate genome-wide association study of wing shape in Drosophila melanogaster. Genetics 211(4), 1429–1447 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Reeve, E. C. R. Genetical aspects of size allometry. P. Roy. Soc. B-Biol. Sci. 137(889), 515–518 (1950).

    CAS 

    Google Scholar 

  • Cowley, D. E. & Atchley, W. R. Development and quantitative genetics of correlation structure among body parts of Drosophila melanogaster. Am. Nat. 135(2), 242–268 (1990).

    Article 

    Google Scholar 

  • Reeve, E. C. R. & Robertson, F. W. Studies in quantitative inheritance. J. Genet. 51(2), 276–316 (1953).

    Article 

    Google Scholar 

  • Menezes, B. F., Vigoder, F. M., Peixoto, A. A., Varaldi, J. & Bitner-Mathé, B. C. The influence of male wing shape on mating success in Drosophila melanogaster. Anim. Behav. 85(6), 1217–1223 (2013).

    Article 

    Google Scholar 

  • Ray, R. P., Nakata, T., Henningsson, P. & Bomphrey, R. J. Enhanced flight performance by genetic manipulation of wing shape in Drosophila. Nat. Commun. 7(1), 1–8 (2016).

    Google Scholar 

  • Falconer D.S., & Mackay T.F.C. Introduction to Quantitative Genetics. (4th ed Benjamin Cummings, Longmans Green: Harlow, UK. 1996).

  • Rohlf, F. J. Comparative methods for the analysis of continuous variables: geometric interpretations. Evolution 55(11), 2143–2160 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Rohlf, F. J. The tps series of software. Hystrix 26(1), (2015).

  • Klingenberg, C. P. MorphoJ: an integrated software package for geometric morphometrics. Mol. Ecol. Resour. 11(2), 353–357 (2011).

    PubMed 
    Article 

    Google Scholar 

  • Patil, I. Visualizations with statistical details: The “ggstatsplot” approach. J. Open Source Softw. 6(61), 3167 (2021).

    ADS 
    Article 

    Google Scholar 

  • R Core Team. R: A language and environment for statistical computing. (R Foundation for Statistical Computing, Vienna, Austria 2021).

  • Wood, S. N., Pya, N. & Säfken, B. Smoothing parameter and model selection for general smooth models. J. Am. Stat. Assoc. 111(516), 1548–1563 (2016).

    MathSciNet 
    CAS 
    Article 

    Google Scholar 

  • Pedersen, E. J., Miller, D. L., Simpson, G. L. & Ross, N. Hierarchical generalized additive models in ecology: An introduction with mgcv. PeerJ 7, e6876 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Wood, S. N. Generalized additive models: an introduction with R 2nd edn. (Chapman and Hall/CRC, 2017).

    MATH 
    Book 

    Google Scholar 

  • Wood, S. N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. B 73(1), 3–36 (2011).

    MathSciNet 
    MATH 
    Article 

    Google Scholar 

  • Kapun, M. et al. Genomic analysis of European Drosophila melanogaster populations reveals longitudinal structure, continent-wide selection, and previously unknown DNA viruses. Mol. Biol. Evol. 37(9), 2661–2678 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • David, J., Bocquet, C. & De Scheemaeker-Louis, M. Genetic latitudinal adaptation of Drosophila melanogaster: new discriminative biometrical traits between European and equatorial African populations. Genet. Res. 30(3), 247–255 (1977).

    Article 

    Google Scholar 

  • Coyne, J. A. & Beecham, E. Heritability of two morphological characters within and among natural populations of Drosophila melanogaster. Genetics 117(4), 727–737 (1987).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Capy, P., Pla, E., & David, J. R. Phenotypic and genetic variability of morphometrical traits in natural populations of Drosophila melanogaster and D. simulans. I. Geographic variations. Genet. Sel. Evol. 25(6), 517–536 (1993).

  • James, A. C., Azevedo, R. B. & Partridge, L. Cellular basis and developmental timing in a size cline of Drosophila melanogaster. Genetics 140(2), 659–666 (1995).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Flatt, T. Life-history evolution and the genetics of fitness components in Drosophila melanogaster. Genetics 214(1), 3–48 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Zhou, Y., Rodriguez, J., Fisher, N. & Catullo, R. A. Ecological drivers and sex-based variation in body size and shape in the Queensland fruit fly, Bactrocera tryoni (Diptera: Tephritidae). Insects 11(6), 390 (2020).

    PubMed Central 
    Article 

    Google Scholar 

  • Gibb, H. et al. Habitat disturbance selects against both small and large species across varying climates. Ecography 41(7), 1184–1193 (2018).

    Article 

    Google Scholar 

  • Kennington, W. J., Killeen, J. R., Goldstein, D. B. & Partridge, L. Rapid laboratory evolution of adult wing area in Drosophila melanogaster in response to humidity. Evolution 57(4), 932–936 (2003).

    PubMed 
    Article 

    Google Scholar 

  • Przybylska, M. S., Roque, F. & Tidon, R. Drosophilid species (Diptera) in the Brazilian Savanna are larger in the dry season. Ann. Entomol. Soc. Am. 107(5), 994–999 (2014).

    Article 

    Google Scholar 

  • Chown, S. L. & Gaston, K. J. Exploring links between physiology and ecology at macro-scales: The role of respiratory metabolism in insects. Biol. Rev. 74(1), 87–120 (1999).

    Article 

    Google Scholar 

  • Telonis-Scott, M., Guthridge, K. M. & Hoffmann, A. A. A new set of laboratory-selected Drosophila melanogaster lines for the analysis of desiccation resistance: response to selection, physiology and correlated responses. J. Exp. Biol. 209(10), 1837–1847 (2006).

    PubMed 
    Article 

    Google Scholar 

  • Gómez, G. F., Márquez, E. J., Gutiérrez, L. A., Conn, J. E. & Correa, M. M. Geometric morphometric analysis of Colombian Anopheles albimanus (Diptera: Culicidae) reveals significant effect of environmental factors on wing traits and presence of a metapopulation. Acta Trop. 135, 75–85 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Service & P. M., Hutchinson, E. W., MacKinley, M. D., & Rose, M. R,. Resistance to environmental stress in Drosophila melanogaster selected for postponed senescence. Physiol. Zool. 58(4), 380–389 (1985).

    Article 

    Google Scholar 

  • Al-Saffar, Z. Y., Grainger, J. N. R. & Aldrich, J. Temperature and humidity affecting development, survival and weight loss of the pupal stage of Drosophila melanogaster, and the influence of alternating temperature on the larvae. J. Therm. Biol. 21(5–6), 389–396 (1996).

    Article 

    Google Scholar 

  • Aggarwal, D. D. et al. Rapid effects of humidity acclimation on stress resistance in Drosophila melanogaster. Comp. Biochem. Phys. A 166(1), 81–90 (2013).

    CAS 
    Article 

    Google Scholar 

  • Bogaerts-Márquez, M., Guirao-Rico, S., Gautier, M. & González, J. Temperature, rainfall and wind variables underlie environmental adaptation in natural populations of Drosophila melanogaster. Mol. Ecol. 30(4), 938–954 (2021).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Carreira, V. P., Mensch, J. & Fanara, J. J. Body size in Drosophila: genetic architecture, allometries and sexual dimorphism. Heredity 102(3), 246–256 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Carreira, V. P., Soto, I. M., Mensch, J. & Fanara, J. J. Genetic basis of wing morphogenesis in Drosophila: Sexual dimorphism and non-allometric effects of shape variation. BMC Dev. Biol. 11(1), 1–16 (2011).

    Article 

    Google Scholar 

  • Parker, G. A. et al. Genetic basis of increased lifespan and postponed senescence in Drosophila melanogaster. G3 – Genes Genom. Genet. 10(3), 1087–1098 (2020).

  • Archer, C. R. et al. Sex-specific effects of natural and sexual selection on the evolution of life span and ageing in Drosophila simulans. Funct. Ecol. 29(4), 562–569 (2015).

    Article 

    Google Scholar 

  • Related posts:

    1. Predicting tissue-specific gene expression from complete blood transcriptome
    2. MRI biomarker to foretell LNM in T3 stage rectal carcinoma
    3. Medical Components Related to Excessive Glycemic Variability Outlined by
    4. Significance of RDW in predicting mortality in COVID‐19—An evaluation of 622 circumstances – Soni – – Worldwide Journal of Laboratory Hematology

    Categories

    • Coefficient of Variation
    • Debt
    • MSCIWI
    • Nasdaq
    • Temporal
    • Terms and Conditions
    • Privacy Policy