SWVRC Fianance, Loans & Debt

Main Menu

  • Home
  • Coefficient of Variation
  • Temporal
  • Nasdaq
  • MSCIWI
  • Debt

SWVRC Fianance, Loans & Debt

Header Banner

SWVRC Fianance, Loans & Debt

  • Home
  • Coefficient of Variation
  • Temporal
  • Nasdaq
  • MSCIWI
  • Debt
Coefficient of Variation
Home›Coefficient of Variation›Re-introduction of an extinct population of Pulsatilla patens using different propagation techniques

Re-introduction of an extinct population of Pulsatilla patens using different propagation techniques

By Maureen Bellinger
August 22, 2022
0
0
  • Uotila, P. Pulsatilla patens × vernalis in Finland. Memo. Soc. Fauna Flora Fenn. 56, 111–117 (1980).

    Google Scholar 

  • Uotila, P. Decline of Anemone patens (Ranunculaceae) in Finland. Symb. Bot. Ups. 31, 205–210 (1996).

    Google Scholar 

  • Uotila, P. Will the Eastern Pasque Flower (Pulsatilla patens) disappear from the Finnish flora? Ann. Acad. Sci. Fenn. Yearbook 2006, 73v80 (2007).

  • Holub, J. & Procházka, F. Red List of vascular plants of the Czech Republic. Preslia 72, 187–230 (2000).

    Google Scholar 

  • Rassi, P., Alanen, A., Kanerva, T. & Mannerkoski, I. The 2000 Red List of Finnish species. The II Committee for the Monitoring of Threatened Species in Finland (The Ministry of the Environment Helsinki, 2001).

  • Pilt, I. & Kukk, Ü. Pulsatilla patens and Pulsatilla pratensis (Ranunculaceae) in Estonia: Distribution and ecology. Proc. Estonian Acad. Sci. Biol. Ecol. 51, 242–256 (2002).

    Article 

    Google Scholar 

  • Kalliovirta, M., Kukk, U. & Ryttäri, T. Pulsatilla patens (L.) Mill. (eds Ryttäri, T., Kukk, U., Kull, T., Jäkäläniemi, A. & Reitalu, M.). Monitoring of Threatened Vascular Plants in Estonia and Finland—Methods and Experiences 37–47 (SYKE, 2003).

  • Wójtowicz, W. Pulsatilla patens (L.) Mill. Sasanka otwarta. (eds Werblan-Jakubiec, H. & Sudnik-Wójcikowska, B.). Poradnik ochrony siedlisk i gatunków Natura 2000—podręcznik metodyczny. Gatunki roślin 168–171 (GIOS Warszawa, 2004). (In Polish).

  • Röder, D. & Kiehl, K. Population structure and population dynamic of Pulsatilla patens (L.) Mill. in relation to vegetation characteristics. Flora 201, 499–507 (2006).

    Article 

    Google Scholar 

  • Juśkiewicz-Swaczyna, B. & Choszcz, D. Effect of habitat quality on the structure of populations of Pulsatilla patens (L.) Mill. (Ranunculaceae)—rare and endangered species of European flora. Pol. J. Ecol. 60, 567–576 (2012).

    Google Scholar 

  • Pawlikowski, P. & Wójtowicz, W. EN Pulsatilla patens (L.) Mill. Sasanka otwarta. (eds Kaźmierczakowa, R., Zarzycki K. & Mirek, Z.), Polish Red Data Book of Plants. Pteridophytes and Flowering Plants 186–188 (Institute of Nature Conservation PAS Kraków, 3rd. Edition, 2014). (In Polish).

  • Kaźmierczakowa, R. et al. Polska czerwona lista paprotników i roślin kwiatowych 44 (Institute of Nature Conservation PAS Kraków, 2016). (In Polish).

  • Szczecińska, M., Sramko, G., Wołosz, K. & Sawicki, J. Genetic diversity and population structure of the rare and endangered plant species Pulsatilla patens (L.) Mill. in East Central Europe. PLoS ONE 11, e0151730. https://doi.org/10.1371/journal.pone.0151730 (2016).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wildeman, A. G. & Steeves, T. A. The morphology and growth cycle of Anemone patens. Can. J. Bot. 60, 1126–1137 (1982).

    Article 

    Google Scholar 

  • Moora, M., Öpik, M., Sen, R. & Zobel, M. Native arbuscular mycorrhizal fungal communities differentially influence the seedling performance of rare and common Pulsatilla species. Funct. Ecol. 18, 554–562 (2004).

    Article 

    Google Scholar 

  • Kalamees, R., Püssa, K., Vanha-Majamaa, I. & Zobel, K. The effects of fire and stand age on seedling establishment of Pulsatilla patens in a pine dominated boreal forest. Can. J. Bot. 83, 688–693 (2005).

    Article 

    Google Scholar 

  • Kalliovirta, M., Ryttäri, T. & Heikkinen, R. K. Population structure of a threatened plant, Pulsatilla patens, in boreal forests: Modelling relationships to overgrowth and site closure. Biodivers. Conserv. 15, 3095–3108 (2006).

    Article 

    Google Scholar 

  • Szczecińska, M., Łazarski, G. & Bilska, K. The complete plastid genome and nuclear genome markers provide molecular evidence for the hybrid origin of Pulsatilla × hackelii Pohl. Turk. J. Bot. 41, 329–337. https://doi.org/10.3906/bot-1610-2 (2017).

    Article 

    Google Scholar 

  • Kricsfalusy, V. Variations in the life cycle of Anemone patens L. (Ranunculaceae) in wild populations of Canada. Plants 5, 1–17. https://doi.org/10.3390/plants5030029 (2016).

    Article 

    Google Scholar 

  • Chmura, D. Zagrożenia lokalnych populacji sasanki otwartej Pulsatilla patens na przykładzie stanowiska na Sodowej Górze. Chrońmy Przyr. Ojcz. 59, 14–27 (2003) (In Polish with English summary).

    Google Scholar 

  • Nowak, T., Tokarska-Guzik, B. & Chmura, D. Materiały do Atlasu rozmieszczenia oraz stanu zasobów roślin chronionych i zagrożonych rejonu górnośląskiego—PRESS Część 7. Pulsatilla patens (L.) Mill. (Ranunculaceae). Acta Biol. Siles. 35, 191–199 (2000) (In Polish with English summary).

    Google Scholar 

  • Whiting, S. N. et al. Research priorities for conservation of metallophyte biodiversity and their potential for restoration and site remediation. Restor. Ecol. 12, 106–116 (2004).

    Article 

    Google Scholar 

  • Siuta, A., Bożek, M., Jędrzejczyk, M., Rostański, A. & Kuta, E. Is the blue zinc violet (Viola guestphalica Nauenb.) a taxon of hybrid origin? Evidence from embryology. Acta Biol. Cracov. series Bot. 47, 237–245 (2005).

    Google Scholar 

  • Zhao, F. J. & McGrath, S. P. Biofortification and phytoremediation. Curr. Opin. Plant Biol. 12, 373–380 (2009).

    CAS 
    Article 

    Google Scholar 

  • Baumbach, H. Metallophytes and metallicolous vegetation: Evolutionary aspects, taxonomic changes and conservational status in Central Europe. (ed Tiefenbacher, J.). Perspectives on Nature Conservation—Patterns, Pressures and Prospects. Ch. 4 (InTech, 2012).

  • Sharrock, S. & Jones, M. Saving Europe’s threatened flora: progress towards GSPC Target 8 in Europe. Biodivers. Conserv. 20, 325–333. https://doi.org/10.1007/s10531-010-9912-z (2011).

    Article 

    Google Scholar 

  • Abeli, T. et al. Ex situ collections and their potential for the restoration of extinct plants. Conserv. Biol. 34, 303–313. https://doi.org/10.1111/cobi.13391 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Abeli, T. et al. Seventeen ‘extinct’ plant species back to conservation attention in Europe. Nat. Plants 7, 282–286. https://doi.org/10.1038/s41477-021-00878-1 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Lesage, J. C., Press, D. & Holl, K. D. Lessons from the reintroduction of listed plant species in California. Biodivers. Conserv. 29, 3703–3716 (2020).

    Article 

    Google Scholar 

  • Sheikholeslami, B., Shukla, M., Turi, C., Harpur, C. & Saxena, P. K. Saving threatened plant species: Reintroduction of Hill’s thistle (Cirsium hillii. (Canby) Fernald) to its natural habitat. PLoS ONE 15, e0231741 (2020).

    CAS 
    Article 

    Google Scholar 

  • Żabicki, P. et al. Does somaclonal variation play advantageous role in conservation practice of endangered species? Comprehensive genetic studies of in vitro propagated plantlets of Viola stagnina Kit. (Violaceae). Plant Cell Tissue Organ Cult. 136, 339–352 (2019).

    Article 

    Google Scholar 

  • Żabicki, P. et al. Cryopreservation and post-thaw genetic integrity of Viola stagnina Kit., an endangered species of wet habitats—A useful tool in ex situ conservation. Sci. Hortic. 284, 110056. https://doi.org/10.1016/j.scienta.2021.110056 (2021).

    CAS 
    Article 

    Google Scholar 

  • Żabicka, J. et al. Genotype-dependent mass somatic embryogenesis: A chance to recover extinct populations of Pulsatilla vulgaris Mill. Plant Cell Tissue Organ Cult. 146, 345–355. https://doi.org/10.1007/s11240-021-02074-7 (2021).

    CAS 
    Article 

    Google Scholar 

  • Li, J.-T. et al. Successful micropropagation of the cadmium hyperaccumulator Viola baoshanensis (Violaceae). Int. J. Phytoremediation 12, 761–771 (2010).

    CAS 
    Article 

    Google Scholar 

  • Muszyńska, E., Hanus-Fajerska, E. & Koźmińska, A. Differential tolerance to lead and cadmium of micropropagated Gypsophila fastigiata ecotype. Water Air Soil Pollut. 229, 42 (2018).

    ADS 
    Article 

    Google Scholar 

  • Muszyńska, E., Labudda, M., Różańska, E., Hanus-Fajerska, E. & Koszelnik-Leszek, A. Structural, physiological and genetic diversification of Silene vulgaris ecotypes from heavy metal-contaminated areas and their synchronous in vitro cultivation. Planta 249, 1761–1778 (2019).

    Article 

    Google Scholar 

  • Baker, A. J. M., Ernst, W. H. O., Van der Ent, A., Malaisse, F. & Ginocchio, R. Metallophytes: the unique biological resource, its ecology and conservational status in Europe, central Africa and Latin America. In Ecology of Industrial Pollution (eds Hallberg, K. B. & Batty, L. C.) (Cambridge University Press, British Ecological Society, 2010).

    Google Scholar 

  • Murashige, T. & Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15, 473–497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x (1962).

    CAS 
    Article 

    Google Scholar 

  • Bolkovskikh, Z. V., Grif, V. G., Zakhareva, O. I. & Matveeva, T. C. (eds). Chromosome numbers of flowering plants (Brooker R. W., Carlsson B. Å. & Callaghan T. V., Nauka, 1969)

  • Marhold, K. et al. Karyological database of ferns and flowering plants of Slovakia. http://147.213.100.121/webapp/ (2005).

  • Sramkó, G., Laczkób, L., Volkovac, P. A., Bateman, R. M. & Mlinarec, J. Evolutionary history of the Pasque-flowers (Pulsatilla, Ranunculaceae): molecular phylogenetics, systematics and rDNA evolution. Mol. Phylogenet. Evol. 135, 45–61. https://doi.org/10.1016/j.ympev.2019.02.015 (2019).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Kowolik, M., Szarek-Łukaszewska, G. & Jędrzejczyk-Korycińska, M. Użytek ekologiczny “Pleszczotka górska” w cynkowo-ołowiowym terenie pogórniczym—Potrzeba aktywnej ochrony. Chrońmy Przyr. Ojcz. 66, 35–38 (2010) (In Polish).

    Google Scholar 

  • Jędrzejczyk-Korycińska, M., & Szarek-Łukaszeska, G., Calaminarian grasslands—threats and conservation prospects—‘BioGalmany’ projects. (Ed. Szarek-Łukaszewska, G.) Buckler mustard (Biscutella laevigata L.) an extraordinary plant on ordinary mine heaps near Olkusz. 295–314 (W. Szafer Institute of Botany, Polish Academy of Sciences, 2020).

  • Jonsson, O., Rosquist, G. & Widén, B. Operation of dichogamy and herkogamy in five taxa of Pulsatilla. Holarctic Ecol. 14, 260–271 (1991).

    Google Scholar 

  • Bock, J. H. & Peterson, S. J. Reproductive biology of Pulsatilla patens (Ranunculaceae). Am. Midl. Nat. 94, 476–478 (1975).

    Article 

    Google Scholar 

  • Uotila, P. Ecology and area of Pulsatilla patens (L.) Mill. in Finland. Ann. Bot. Fenn. 6, 105–111 (1969).

    Google Scholar 

  • Lin, G. Z. et al. Somatic embryogenesis and shoot organogenesis in the medicinal plant Pulsatilla koreana Nakai. PTCOC 106, 93–103. https://doi.org/10.1007/s11240-010-9897-z (2011).

    CAS 
    Article 

    Google Scholar 

  • Šedivá, J. & Kubištowá, L. Influence of growth regulators on multiplication of pasqueflower (Pulsatilla sp.). Acta Pruhon. 89, 59–62 (2008) (In Czech).

    Google Scholar 

  • Šedivá, J. In vitro root formation in Pulsatilla vernalis (L.) Mill. Propag. Ornam. Plants 12, 96–101 (2012).

    Google Scholar 

  • Šedivá, J. & Žlebčík, J. Summary of findings from a propagation and ex situ conservation of Pulsatilla vernalis, P. pratensis ssp. bohemica, P. patens and P. grandis. Acta Pruhon. 100, 155–160 (2012). (In Czech with English summary).

    Google Scholar 

  • Hanus-Fajerska, E., Kocot, D., Wiszniewska, A., Koźmińska, A. & Muszyńska, E. Micropropagation and experimental field cultivation of Pulsatilla turczaninovii Kryl. et Serg. (Ranunculaceae). Plant Cell Tissue Organ Cult. 147, 477–489. https://doi.org/10.1007/s11240-021-02140-0 (2021).

    CAS 
    Article 

    Google Scholar 

  • Pence, V. C. Evaluating costs for the in vitro propagation and preservation of endangered plants. In Vitro Cell. Dev. Biol.–Plant 47, 176–187. https://doi.org/10.1007/s11627-010-9323-6 (2011).

    Article 

    Google Scholar 

  • Streczynski, R. et al. Current issues in plant cryopreservation and importance for ex situ conservation of threatened Australian native species. Aust. J. Bot. 67, 1–15. https://doi.org/10.1071/BT18147 (2019).

    Article 

    Google Scholar 

  • Coelho, N., Gonçalves, S. & Romano, A. Endemic plant species conservation: Biotechnological approaches. Plants 9, 345. https://doi.org/10.3390/plants9030345 (2020).

    CAS 
    Article 
    PubMed Central 

    Google Scholar 

  • Singh, R. J. Plant Cytogenetics 2nd edn. (CRC Press, 2003).

    Google Scholar 

  • Priede, G. & Kļaviņa, D. In vitro cultivation and root initiation of the endangered plant Pulsatilla patens. Environ. Exp. Bot. 9, 71–74 (2011).

    Google Scholar 

  • Doležel, J., Sgorbati, S. & Lucretti, S. Comparison of three DNA fluorochromes for flow cytometric estimation of nuclear DNA content in plants. Physiol. Plant. 85, 625–631. https://doi.org/10.1111/j.1399-3054.1992.tb04764.x (1992).

    Article 

    Google Scholar 

  • Marie, D. & Brown, S. C. A cytometric exercise in plant DNA histograms, with 2C values for 70 species. Biol. Cell 78, 41–51. https://doi.org/10.1016/0248-4900(93)90113-S (1993).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Thiem, B. & Sliwinska, E. Flow cytometric analysis of nuclear DNA content in cloudberry (Rubus chamaemorus L.) in vitro cultures. Plant Sci. 164, 129–134 (2003).

    CAS 
    Article 

    Google Scholar 

  • Gavel, N. J. & Jarret, R. L. A modified CTAB DNA extraction procedure for Musa and Ipomoea. Plant Mol. Biol. Rep. 9, 262–266. https://doi.org/10.1007/BF02672076 (1991).

    Article 

    Google Scholar 

  • Gupta, M., Chyi, Y. S., Romero-Severson, J. & Owen, J. L. Amplification of DNA markers from evolutionary diverse genomes using single primers of simple-sequence repeats. Theor. Appl. Genet. 89, 998–1006. https://doi.org/10.1007/BF00224530 (1994).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Stepansky, A., Kovalski, I. & Perl-Treves, R. Intraspecific classification of melons (Cucumis melo L.) in view of their phenotypic and molecular variation. Plant Syst. Evol. 217, 313–332 (1999).

    CAS 
    Article 

    Google Scholar 

  • Huson, D. H. & Bryant, D. Application of phylogenetic networks in evolutionary studies. Mol. Biol. Evol. 23, 254–267. https://doi.org/10.1093/molbev/msj030 (2006).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Related posts:

    1. Predicting tissue-specific gene expression from complete blood transcriptome
    2. MRI biomarker to foretell LNM in T3 stage rectal carcinoma
    3. Medical Components Related to Excessive Glycemic Variability Outlined by
    4. Significance of RDW in predicting mortality in COVID‐19—An evaluation of 622 circumstances – Soni – – Worldwide Journal of Laboratory Hematology

    Categories

    • Coefficient of Variation
    • Debt
    • MSCIWI
    • Nasdaq
    • Temporal
    • Terms and Conditions
    • Privacy Policy