SWVRC Fianance, Loans & Debt

Main Menu

  • Home
  • Coefficient of Variation
  • Temporal
  • Nasdaq
  • MSCIWI
  • Debt

SWVRC Fianance, Loans & Debt

Header Banner

SWVRC Fianance, Loans & Debt

  • Home
  • Coefficient of Variation
  • Temporal
  • Nasdaq
  • MSCIWI
  • Debt
Coefficient of Variation
Home›Coefficient of Variation›Prediction of arabica coffee production using artificial neural network and multiple linear regression techniques

Prediction of arabica coffee production using artificial neural network and multiple linear regression techniques

By Maureen Bellinger
August 25, 2022
0
0
  • Lewin, B., Giovannucci, D. & Varangis, P. Coffee markets: New paradigms in global supply and demand. World Bank Agric. Rural Dev. Discuss. Paper https://doi.org/10.2139/ssrn.996111 (2004).

    Article 

    Google Scholar 

  • Panhuysen, S. & Pierrot, J. Coffee barometer 2014. Hivos, IUCN Nederland, Oxfam, Novib, Solidaridad, WWF. (2014).

  • Torok, A., Mizik, T., Jambor, A. J. I. J. O. E. & Issues, F. The competitiveness of global coffee trade. Int. J. Econ. Financ. 8, 1–6. https://doi.org/10.32479/ijefi.6692 (2018).

    CAS 
    Article 

    Google Scholar 

  • Degaga, J. & Alamerie, K. J. E. Supply and performance of coffee markets in Gololcha district of Oromia region, Ethiopia. Ekonomika Poljoprivrede. 67, 797–816. https://doi.org/10.5937/ekopolj2003797d (2020).

    Article 

    Google Scholar 

  • Genanaw, T. & Lamenew, W. Indigenous knowledge management framework for coffee production in Ethiopia. Ethiop. e-J. Res. Innov. Foresight. 6, 53–61 (2019).

    Google Scholar 

  • Duarte, A., Uribe, J. C., Sarache, W. & Calderón, A. J. E. Economic, environmental, and social assessment of bioethanol production using multiple coffee crop residues. Energy 216, 119170. https://doi.org/10.1016/j.energy.2020.119170 (2021).

    CAS 
    Article 

    Google Scholar 

  • Effendi, D. & Rismaya, M. Design and development of coffee production information system to support coffee production productivity in farmers group. IOP Conf. Ser. Mater. Sci. Eng. 879, 012058. https://doi.org/10.1088/1757-899x/879/1/012058 (2020).

    Article 

    Google Scholar 

  • Baloi, D. & Price, A. D. J. I. J. O. P. M. Modelling global risk factors affecting construction cost performance. Int. J. Proj. Manag. 21, 261–269. https://doi.org/10.1016/s0263-7863(02)00017-0 (2003).

    Article 

    Google Scholar 

  • Kittichotsatsawat, Y., Jangkrajarng, V. & Tippayawong, K. Y. J. S. Enhancing coffee supply chain towards sustainable growth with big data and modern agricultural technologies. Sustainability. 13, 4593. https://doi.org/10.3390/su13084593 (2021).

    Article 

    Google Scholar 

  • International Coffee Organization. Developing a sustainable coffee economy (2020). http://www.ico.org/sustaindev_e.asp. Accessed 30 March 2022.

  • Chuqian, W. A study on the situation and development of the coffee industry in Thailand (2018).

  • Trébuil, G., Ekasingh, B. & Ekasingh, M. Agricultural commercialisation, diversification, and conservation of renewable resources in northern Thailand highlands. Moussons. 9–10, 131–155. https://doi.org/10.4000/moussons.2005 (2006).

    Article 

    Google Scholar 

  • Sutthi, C. Highland agriculture: From better to worse. Hill Tribes Today. 107–142. (1989).

  • Romani, S., Cevoli, C., Fabbri, A., Alessandrini, L. & Dalla Rosa, M. Evaluation of coffee roasting degree by using electronic nose and artificial neural network for off-line quality control. J. Food Sci. 77, C960–C965. https://doi.org/10.1016/j.foodres.2020.109667 (2012).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Moon, M. A. Demand and supply integration: The key to world-class demand forecasting. Walter de Gruyter https://doi.org/10.1515/9781501506024 (2018).

    Article 

    Google Scholar 

  • Doucoure, B., Agbossou, K. & Cardenas, A. Time series prediction using artificial wavelet neural network and multi-resolution analysis: Application to wind speed data. Renew. Energy. 92, 202–211. https://doi.org/10.1016/j.renene.2016.02.003 (2016).

    Article 

    Google Scholar 

  • Ashokkumar, K., Chowdary, D. D. & Sree, C. D. Data analysis and prediction on cloud computing for enhancing productivity in agriculture. IOP Conf. Ser. Mater. Sci. Eng. 590, 012014. https://doi.org/10.1088/1757-899x/590/1/012014 (2019).

    Article 

    Google Scholar 

  • Rajeswari, S. & Suthendran, K. Developing an agricultural product price prediction model using HADT algorithm. Int. J. Eng. Adv. Technol. 9, 569–575. https://doi.org/10.35940/ijeat.a1126.1291s419 (2019).

    Article 

    Google Scholar 

  • Janiesch, C., Zschech, P. & Heinrich, K. Machine learning and deep learning. Electron. Mark. 3, 685–695. https://doi.org/10.1007/s12525-021-00475-2 (2021).

    Article 

    Google Scholar 

  • Tripathy, A., Agrawal, A. & Rath, S. K. Classification of sentiment reviews using n-gram machine learning approach. Expert Syst. Appl. 57, 117–126. https://doi.org/10.1016/j.eswa.2016.03.028 (2016).

    Article 

    Google Scholar 

  • Sun, S., Cao, Z., Zhu, H. & Zhao, J. A survey of optimization methods from a machine learning perspective. IEEE Trans. Cybern. 8, 3668–3681. https://doi.org/10.1109/tcyb.2019.2950779 (2019).

    Article 

    Google Scholar 

  • Valletta, J. J., Torney, C., Kings, M., Thornton, A. & Madden, J. Applications of machine learning in animal behaviour studies. Anim. Behav. 124, 203–220. https://doi.org/10.1016/j.anbehav.2016.12.005 (2017).

    Article 

    Google Scholar 

  • Dogan, A. & Birant, D. Machine learning and data mining in manufacturing. Expert Syst. Appl. 166, 114060. https://doi.org/10.1016/j.eswa.2020.114060 (2021).

    Article 

    Google Scholar 

  • Wiens, J. & Shenoy, E. S. Machine learning for healthcare: On the verge of a major shift in healthcare epidemiology. Clin. Infect. Dis. 66, 149–153. https://doi.org/10.1093/cid/cix731 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Howard, J. Artificial intelligence: Implications for the future of work. Am. J. Ind. Med. 11, 917–926. https://doi.org/10.1002/ajim.23037 (2019).

    Article 

    Google Scholar 

  • L’heureux, A., Grolinger, K., Elyamany, H. F. & Capretz, M. A. Machine learning with big data: Challenges and approaches. IEEE Access. 5, 7776–7797. https://doi.org/10.1109/access.2017.2696365 (2017).

    Article 

    Google Scholar 

  • Kim, D. et al. Review of machine learning methods in soft robotics. PLoS ONE 16, e0246102. https://doi.org/10.1371/journal.pone.0246102 (2021).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Abiodun, O. I. et al. State-of-the-art in artificial neural network applications: A survey. Heliyon. 11, e00938. https://doi.org/10.1016/j.heliyon.2018.e00938 (2018).

    Article 

    Google Scholar 

  • Lindsay, G. W. Attention in psychology, neuroscience, and machine learning. Front. Comput. Neurosci. 14, 29. https://doi.org/10.3389/fncom.2020.00029 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dalal, S. R. et al. In model-based testing in practice. In Proceedings of the 21st International Conference on Software Engineering—ICSE ’99. 285–294. https://doi.org/10.1145/302405.302640 (1999).

  • Brownlee, J. Supervised and unsupervised machine learning algorithms. Mach. Learn. Mastery. 3 (2016). https://machinelearningmastery.com/supervised-and-unsupervised-machine-learning-algorithms/. Accessed 30 March 2022.

  • Çınar, Z. M. et al. Machine learning in predictive maintenance towards sustainable smart manufacturing in industry 4.0. Sustainability. 19, 8211. https://doi.org/10.3390/su12198211 (2020).

    Article 

    Google Scholar 

  • Onsree, T. & Tippayawong, N. Machine learning application to predict yields of solid products from biomass torrefaction. Renew. Energy. 167, 425–432. https://doi.org/10.1016/j.renene.2020.11.099 (2021).

    CAS 
    Article 

    Google Scholar 

  • Onsree, T., Tippayawong, N., Phithakkitnukoon, S. & Lauterbach, J. Interpretable machine-learning model with a collaborative game approach to predict yields and higher heating value of torrefied biomass. Energy 249, 123676. https://doi.org/10.1016/j.energy.2022.123676 (2022).

    Article 

    Google Scholar 

  • Agatonovic-Kustrin, S. & Beresford, R. Basic concepts of artificial neural network (ANN) modeling and its application in pharmaceutical research. J. Pharm. Biomed. Anal. 5, 717–727. https://doi.org/10.1016/s0731-7085(99)00272-1 (2000).

    Article 

    Google Scholar 

  • Singh, Y. & Chauhan, A. S. Neural networks in data mining. J. Theor. Appl. Inf. Technol. 1, 1–6 (2009).

    CAS 

    Google Scholar 

  • Abrougui, K. et al. Prediction of organic potato yield using tillage systems and soil properties by artificial neural network (ANN) and multiple linear regressions (MLR). Soil Tillage Res. 190, 202–208. https://doi.org/10.1016/j.still.2019.01.011 (2019).

    Article 

    Google Scholar 

  • May, R. J., Dandy, G. C., Maier, H. R. & Nixon, J. B. Application of partial mutual information variable selection to ANN forecasting of water quality in water distribution systems. Environ. Model. Softw. 10–11, 1289–1299. https://doi.org/10.1016/j.envsoft.2008.03.008 (2008).

    Article 

    Google Scholar 

  • Anderson, D. & McNeill, G. Artificial neural networks technology. Kaman Sci. Corp. 6, 1–83 (1992).

    Google Scholar 

  • Zain, A. M., Haron, H. & Sharif, S. Prediction of surface roughness in the end milling machining using artificial neural network. Expert Syst. Appl. 37, 1755–1768. https://doi.org/10.1016/j.eswa.2009.07.033 (2010).

    Article 

    Google Scholar 

  • Togun, N. K. & Baysec, S. Prediction of torque and specific fuel consumption of a gasoline engine by using artificial neural networks. Appl. Energy. 87, 349–355. https://doi.org/10.1016/j.apenergy.2009.08.016 (2010).

    CAS 
    Article 

    Google Scholar 

  • Yosinski, J., Clune, J., Nguyen, A., Fuchs, T. & Lipson, H. Understanding neural networks through deep visualization. Explain AI. Interpret. Explain. Vis. Deep Learn. https://doi.org/10.1007/978-3-030-28954-6_4 (2015).

    Article 

    Google Scholar 

  • Krenker, A., Bešter, J. & Kos, A. Introduction to the artificial neural networks. Artif. Neural Netw. Methodol. Adv. Biomed. Appl https://doi.org/10.5772/15751 (2011).

    Article 

    Google Scholar 

  • Kouadri, S., Pande, C. B., Panneerselvam, B., Moharir, K. N. & Elbeltagi, A. Prediction of irrigation groundwater quality parameters using ANN, LSTM, and MLR models. Environ. Sci. Pollut. Res. 29, 21067–21091. https://doi.org/10.1007/s11356-021-17084-3 (2022).

    CAS 
    Article 

    Google Scholar 

  • Ceylan, Z. & Bulkan, S. Forecasting PM10 levels using ANN and MLR: A case study for Sakarya City. Glob. Nest J. 20, 281–290. https://doi.org/10.30955/gnj.002522 (2018).

    CAS 
    Article 

    Google Scholar 

  • Shams, S. R., Jahani, A., Kalantary, S., Moeinaddini, M. & Khorasani, N. The evaluation on artificial neural networks (ANN) and multiple linear regressions (MLR) models for predicting SO2 concentration. Urban Clim. 37, 100837. https://doi.org/10.1016/j.uclim.2021.100837 (2021).

    Article 

    Google Scholar 

  • Chakraborty, A. & Goswami, D. Prediction of slope stability using multiple linear regression (MLR) and artificial neural network (ANN). Arab. J. Geosci. 10, 1–11. https://doi.org/10.1007/s12517-017-3167-x (2017).

    Article 

    Google Scholar 

  • Louis, B., Agrawal, V. K. & Khadikar, P. V. Prediction of intrinsic solubility of generic drugs using MLR, ANN and SVM analyses. Eur. J. Med. Chem. 45, 4018–4025. https://doi.org/10.1016/j.ejmech.2010.05.059 (2010).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Ekemen Keskin, T., Özler, E., Şander, E., Düğenci, M. & Ahmed, M. Y. Prediction of electrical conductivity using ANN and MLR: A case study from Turkey. Acta Geophys. 68, 811–820. https://doi.org/10.1007/s11600-020-00424-1 (2020).

    ADS 
    Article 

    Google Scholar 

  • Lee, K. Y., Chung, N. & Hwang, S. Application of an artificial neural network (ANN) model for predicting mosquito abundances in urban areas. Ecol. Inform. 36, 172–180. https://doi.org/10.1016/j.ecoinf.2015.08.011 (2016).

    Article 

    Google Scholar 

  • Chutsagulprom, N., Chaisee, K., Wongsaijai, B., Inkeaw, P. & Oonariya, C. Spatial interpolation methods for estimating monthly rainfall distribution in Thailand. Theor. Appl. Climatol. 148, 1–12. https://doi.org/10.21203/rs.3.rs-568778/v1 (2022).

    Article 

    Google Scholar 

  • Chen, L. J., Lian, G. P. & Han, L. J. Prediction of human skin permeability using artificial neural network (ANN) modeling. Acta Pharmacol. Sin. 28, 591–600. https://doi.org/10.1111/j.1745-7254.2007.00528.x (2007).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Soroushmehr, S. R. & Najarian, K. Transforming big data into computational models for personalized medicine and health care. Dialogues Clin. Neurosci. https://doi.org/10.31887/dcns.2016.18.3/ssoroushmehr (2022).

    Article 

    Google Scholar 

  • Cervantes-Sanchez, F., Cruz-Aceves, I., Hernandez-Aguirre, A., Hernandez-Gonzalez, M. A. & Solorio-Meza, S. E. Automatic segmentation of coronary arteries in X-ray angiograms using multiscale analysis and artificial neural networks. Appl. Sci. 24, 5507. https://doi.org/10.3390/app9245507 (2019).

    Article 

    Google Scholar 

  • Priya, D. K., Sam, B. B., Lavanya, S. & Sajin, A. P. A survey on medical image denoising using optimisation technique and classification. Int. Conf. Inf. Commun. Embed. Syst. https://doi.org/10.1109/icices.2017.8070729 (2017).

    Article 

    Google Scholar 

  • Patil, J. V. & Bailke, P. Real time facial expression recognition using RealSense camera and ANN. Int. Conf. Invent. Comput. Technol. 2, 1–6. https://doi.org/10.1109/inventive.2016.7824820 (2016).

    Article 

    Google Scholar 

  • Islam, K. T. & Raj, R. G. Real-time (vision-based) road sign recognition using an artificial neural network. Sensors. 17, 853. https://doi.org/10.3390/s17040853 (2017).

    ADS 
    Article 
    PubMed Central 

    Google Scholar 

  • Lahmyed, R., Ansari, M. E. & Kerkaou, Z. J. S. C. Automatic road sign detection and recognition based on neural network. Soft Comput. 26, 1–22. https://doi.org/10.1007/s00500-021-06726-w (2022).

    Article 

    Google Scholar 

  • Kryvinska, N., Poniszewska-Maranda, A. & Gregus, M. An approach towards service system building for road traffic signs detection and recognition. Proc. Comput. Sci. 141, 64–71. https://doi.org/10.1016/j.procs.2018.10.150 (2018).

    Article 

    Google Scholar 

  • Chauhan, R., Dumka, P. & Mishra, D. R. Modelling conventional and solar earth still by using the LM algorithm-based artificial neural network. Int. J. Ambient Energy. 43, 1389–1396. https://doi.org/10.1080/01430750.2019.1707113 (2022).

    CAS 
    Article 

    Google Scholar 

  • Zaefizadeh, M., Jalili, A., Khayatnezhad, M., Gholamin, R. & Mokhtari, T. Comparison of multiple linear regressions (MLR) and artificial neural network (ANN) in predicting the yield using its components in the hulless barley. Adv. Environ. Biol. 5, 109–114 (2011).

    Google Scholar 

  • Anita, S. In classification Cherry’s Coffee using k-Nearest Neighbor (KNN) and Artificial Neural Network (ANN). In 2020 International Conference on Information Technology Systems and Innovation (ICITSI).117–122 (IEEE). https://doi.org/10.1109/icitsi50517.2020.9264925 (2020).

  • Ahmad, A. S. et al. A review on applications of ANN and SVM for building electrical energy consumption forecasting. Renew. Sustain. Energy Rev. 33, 102–109. https://doi.org/10.1016/j.rser.2014.01.069 (2014).

    ADS 
    Article 

    Google Scholar 

  • Leme, D. S., da Silva, S. A., Barbosa, B. H. G., Borém, F. M. & Pereira, R. G. F. A. Recognition of coffee roasting degree using a computer vision system. Comput. Electron. Agric. 156, 312–317. https://doi.org/10.1016/j.compag.2018.11.029 (2019).

    Article 

    Google Scholar 

  • Van Klompenburg, T., Kassahun, A. & Catal, C. Crop yield prediction using machine learning: A systematic literature review. Comput. Electron. Agric. 177, 105709. https://doi.org/10.1016/j.compag.2020.105709 (2020).

    Article 

    Google Scholar 

  • Torkashvand, A. M., Ahmadi, A. & Nikravesh, N. L. Prediction of kiwifruit firmness using fruit mineral nutrient concentration by artificial neural network (ANN) and multiple linear regressions (MLR). J. Integr. Agric. 7, 1634–1644. https://doi.org/10.1016/s2095-3119(16)61546-0 (2017).

    CAS 
    Article 

    Google Scholar 

  • Dhyani, S. Predicting Rainfall for Agriculture in India Using Regression (Dublin Business School, 2020). https://esource.dbs.ie/handle/10788/4230.

  • Etminan, A. et al. Determining the best drought tolerance indices using artificial neural network (ANN): Insight into application of intelligent agriculture in agronomy and plant breeding. Cereal Res. Commun. 47, 170–181. https://doi.org/10.1556/0806.46.2018.057 (2019). Accessed 30 March 2022.

    Article 

    Google Scholar 

  • Afan, H. A. et al. ANN based sediment prediction model utilizing different input scenarios. Water Resour. Manag. 4, 1231–1245. https://doi.org/10.1007/s11269-014-0870-1 (2015).

    Article 

    Google Scholar 

  • Bouktif, S., Fiaz, A., Ouni, A. & Serhani, M. A. Optimal deep learning lstm model for electric load forecasting using feature selection and genetic algorithm: Comparison with machine learning approaches. Energies 7, 1636. https://doi.org/10.3390/en11071636 (2018).

    Article 

    Google Scholar 

  • Landwehr, N., Hall, M. & Frank, E. Logistic model trees. Mach. Learn. Mastery. 1, 161–205. https://doi.org/10.1007/s10994-005-0466-3 (2005).

    Article 
    MATH 

    Google Scholar 

  • Wilkinson, L. Statistical methods in psychology journals: Guidelines and explanations. Am. Psychol. 8, 594. https://doi.org/10.1037/0003-066x.54.8.594 (1999).

    Article 

    Google Scholar 

  • Kath, J., Byrareddy, V. M., Mushtaq, S., Craparo, A. & Porcel, M. Temperature and rainfall impacts on robusta coffee bean characteristics. Clim. Risk Manag. 32, 100281. https://doi.org/10.1016/j.crm.2021.100281 (2021).

    Article 

    Google Scholar 

  • Jayakumar, M., Rajavel, M. & Surendran, U. Climate-based statistical regression models for crop yield forecasting of coffee in humid tropical Kerala, India. Int. J. Biometeorol. 12, 1943–1952. https://doi.org/10.1007/s00484-016-1181-4 (2016).

    Article 

    Google Scholar 

  • Ilaboya, I. R. & Igbinedion, O. E. Performance of multiple linear regression (MLR) and artificial neural network (ANN) for the prediction of monthly maximum rainfall in Benin City, Nigeria. Int. J. Eng. Sci. Appl. 1, 21–37 (2019).

    Google Scholar 

  • Katongtung, T., Onsree, T. & Tippayawong, N. Machine learning prediction of biocrude yields and higher heating values from hydrothermal liquefaction of wet biomass and wastes. Bioresour. Technol. 344, 126278. https://doi.org/10.1016/j.biortech.2021.126278 (2022).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Wongchai, W., Onsree, T., Sukkam, N., Promwungkwa, A. & Tippayawong, N. Machine learning models for estimating above ground biomass of fast growing trees. Expert Syst. Appl. 199, 117186. https://doi.org/10.1016/j.eswa.2022.117186 (2022).

    Article 

    Google Scholar 

  • Bayat, M., Ghorbanpour, M., Zare, R., Jaafari, A. & Pham, B. T. Application of artificial neural networks for predicting tree survival and mortality in the Hyrcanian forest of Iran. Comput. Electron. Agric. 164, 104929. https://doi.org/10.1016/j.compag.2019.104929 (2019).

    Article 

    Google Scholar 

  • Ustaoglu, B., Cigizoglu, H. & Karaca, M. Forecast of daily mean, maximum and minimum temperature time series by three artificial neural network methods. Meteorol. Appl. 15, 431–445. https://doi.org/10.1002/met.83 (2008).

    ADS 
    Article 

    Google Scholar 

  • El-Shafie, A., Mukhlisin, M., Najah, A. A. & Taha, M. R. Performance of artificial neural network and regression techniques for rainfall-runoff prediction. Int. J. Phys. Sci. 6, 1997–2003. https://doi.org/10.54302/mausam.v62i1.4711 (2011).

    Article 

    Google Scholar 

  • Matsumura, K., Gaitan, C. F., Sugimoto, K., Cannon, A. J. & Hsieh, W. W. Maize yield forecasting by linear regression and artificial neural networks in Jilin, China. J. Agric. Sci. 153, 399–410. https://doi.org/10.1017/s0021859614000392 (2015).

    Article 

    Google Scholar 

  • Patle, G., Chettri, M. & Jhajharia, D. Monthly pan evaporation modelling using multiple linear regression and artificial neural network techniques. Water Supply 20, 800–808. https://doi.org/10.2166/ws.2019.189 (2020).

    Article 

    Google Scholar 

  • Kisi, O., Tombul, M. & Kermani, M. Z. Modeling soil temperatures at different depths by using three different neural computing techniques. Theor. Appl. Climatol. 121, 377–387. https://doi.org/10.1007/s00704-014-1232-x (2015).

    ADS 
    Article 

    Google Scholar 

  • Yasar, A., Simsek, E., Bilgili, M., Yucel, A. & Ilhan, I. Estimation of relative humidity based on artificial neural network approach in the Aegean Region of Turkey. Meteorol. Atmos. Phys. 115, 81–87. https://doi.org/10.1007/s00703-011-0168-2 (2012).

    ADS 
    Article 

    Google Scholar 

  • Li, Y. et al. Toward building a transparent statistical model for improving crop yield prediction: Modeling rainfed corn in the US. Field Crops Res. 234, 55–65. https://doi.org/10.1016/j.fcr.2019.02.005 (2019).

    Article 

    Google Scholar 

  • Han, X. et al. Crop evapotranspiration prediction by considering dynamic change of crop coefficient and the precipitation effect in back-propagation neural network model. J. Hydrol. 596, 126104. https://doi.org/10.1016/j.jhydrol.2021.126104 (2021).

    Article 

    Google Scholar 

  • Adisa, O. M. et al. Application of artificial neural network for predicting maize production in South Africa. Sustainability. 4, 1145. https://doi.org/10.3390/su11041145 (2019).

    Article 

    Google Scholar 

  • Gonzalez-Sanchez, A., Frausto-Solis, J. & Ojeda-Bustamante, W. Attribute selection impact on linear and nonlinear regression models for crop yield prediction. Sci. World J. 2014, 1–10. https://doi.org/10.1155/2014/509429 (2014).

    Article 

    Google Scholar 

  • Balakrishnan, N. & Muthukumarasamy, G. Crop production-ensemble machine learning model for prediction. Int. J. Comput. Sci. Softw. Eng. 7, 148 (2016).

    Google Scholar 

  • Leng, J. et al. A loosely-coupled deep reinforcement learning approach for order acceptance decision of mass-individualized printed circuit board manufacturing in industry 4.0. J. Clean. Prod. 280, 124405. https://doi.org/10.1016/j.jclepro.2020.124405 (2021).

    Article 

    Google Scholar 

  • Leng, J., Chen, Q., Mao, N. & Jiang, P. Combining granular computing technique with deep learning for service planning under social manufacturing contexts. Knowl. Based Syst. 143, 295–306. https://doi.org/10.1016/j.knosys.2017.07.023 (2018).

    Article 

    Google Scholar 

  • Phromphithak, S., Onsree, T. & Tippayawong, N. Machine learning prediction of cellulose-rich materials from biomass pretreatment with ionic liquid solvents. Bioresour. Technol. 323, 124642. https://doi.org/10.1016/j.biortech.2020.124642 (2021).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Leng, J. et al. Bi-level artificial intelligence model for risk classification of acute respiratory diseases based on Chinese clinical data. Appl. Intell. https://doi.org/10.1007/s10489-022-03222-y (2022).

    Article 

    Google Scholar 

  • Leng, J. & Jiang, P. Granular computing–based development of service process reference models in social manufacturing contexts. Concurr. Eng. 25, 95–107. https://doi.org/10.1177/1063293×16666312 (2017).

    Article 

    Google Scholar 

  • Bu, F. & Wang, X. A smart agriculture IoT system based on deep reinforcement learning. Future Gener. Comput. Syst. 99, 500–507. https://doi.org/10.1016/j.future.2019.04.041 (2019).

    Article 

    Google Scholar 

  • Hsu, K. L., Gupta, H. V. & Sorooshian, S. Artificial neural network modeling of the rainfall-runoff process. Water Resour. Res. 10, 2517–2530. https://doi.org/10.1029/95wr01955 (1995).

    ADS 
    Article 

    Google Scholar 

  • Related posts:

    1. Predicting tissue-specific gene expression from complete blood transcriptome
    2. MRI biomarker to foretell LNM in T3 stage rectal carcinoma
    3. Medical Components Related to Excessive Glycemic Variability Outlined by
    4. Significance of RDW in predicting mortality in COVID‐19—An evaluation of 622 circumstances – Soni – – Worldwide Journal of Laboratory Hematology

    Categories

    • Coefficient of Variation
    • Debt
    • MSCIWI
    • Nasdaq
    • Temporal
    • Terms and Conditions
    • Privacy Policy