SWVRC Fianance, Loans & Debt

Main Menu

  • Home
  • Coefficient of Variation
  • Temporal
  • Nasdaq
  • MSCIWI
  • Debt

SWVRC Fianance, Loans & Debt

Header Banner

SWVRC Fianance, Loans & Debt

  • Home
  • Coefficient of Variation
  • Temporal
  • Nasdaq
  • MSCIWI
  • Debt
Coefficient of Variation
Home›Coefficient of Variation›Modelling monthly pan evaporation utilising Random Forest and deep learning algorithms

Modelling monthly pan evaporation utilising Random Forest and deep learning algorithms

By Maureen Bellinger
July 30, 2022
0
0
  • Shiri, J. & Kişi, Ö. Application of artificial intelligence to estimate daily pan evaporation using available and estimated climatic data in the Khozestan Province (South Western Iran). J. Irrig. Drain. Eng. 137, 412–425 (2011).

    Article 

    Google Scholar 

  • Gundalia, M. J. & Dholakia, M. B. Estimation of pan evaporation using mean air temperature and radiation for monsoon season in Junagadh region. Int. J. Eng. Res. Appl. 3, 64–70 (2013).

    Google Scholar 

  • Fan, J., Wu, L., Zhang, F., Xiang, Y. & Zheng, J. Climate change effects on reference crop evapotranspiration across different climatic zones of China during 1956–2015. J. Hydrol. 542, 923–937 (2016).

    ADS 
    Article 

    Google Scholar 

  • Feng, Y., Jia, Y., Zhang, Q., Gong, D. & Cui, N. National-scale assessment of pan evaporation models across different climatic zones of China. J. Hydrol. 564, 314–328 (2018).

    ADS 
    Article 

    Google Scholar 

  • Chen, Y., He, L., Li, J. & Zhang, S. Multi-criteria design of shale-gas-water supply chains and production systems towards optimal life cycle economics and greenhouse gas emissions under uncertainty. Comput. Chem. Eng. 109, 216–235 (2018).

    CAS 
    Article 

    Google Scholar 

  • Wang, Q., Wang, W., Zhong, Z., Wang, H. & Fu, Y. Variation in glomalin in soil profiles and its association with climatic conditions, shelterbelt characteristics, and soil properties in poplar shelterbelts of Northeast China. J. For. Res. 31, 279–290 (2020).

    CAS 
    Article 

    Google Scholar 

  • Allawi, M. F. et al. Reservoir evaporation prediction modeling based on artificial intelligence methods. Water 11, 1226 (2019).

    Article 

    Google Scholar 

  • Morton, F. I. Evaporation and Climate: A Study in Cause and Effect, Scientific Series No. 4 (International Water Branch, Department Energy, Mines Resource, 1968).

    Google Scholar 

  • Vicente-Serrano, S. M. et al. A comparison of temporal variability of observed and model-based pan evaporation over Uruguay (1973–2014). Int. J. Climatol. 38, 337–350 (2018).

    Article 

    Google Scholar 

  • Fan, J. et al. Evaluation and development of temperature-based empirical models for estimating daily global solar radiation in humid regions. Energy 144, 903–914 (2018).

    Article 

    Google Scholar 

  • Wu, L. et al. Hybrid extreme learning machine with meta-heuristic algorithms for monthly pan evaporation prediction. Comput. Electron. Agric. 168, 105115 (2020).

    Article 

    Google Scholar 

  • Keshtegar, B., Piri, J. & Kisi, O. A nonlinear mathematical modeling of daily pan evaporation based on conjugate gradient method. Comput. Electron. Agric. 127, 120–130 (2016).

    Article 

    Google Scholar 

  • Kişi, Ö. Daily pan evaporation modelling using multi-layer perceptrons and radial basis neural networks. Hydrol. Process. Int. J. 23, 213–223 (2009).

    ADS 
    Article 

    Google Scholar 

  • Arunkumar, R. & Jothiprakash, V. Reservoir evaporation prediction using data-driven techniques. J. Hydrol. Eng. 18, 40–49 (2013).

    Article 

    Google Scholar 

  • Quinn, R., Parker, A. & Rushton, K. Evaporation from bare soil: Lysimeter experiments in sand dams interpreted using conceptual and numerical models. J. Hydrol. 564, 909–915 (2018).

    ADS 
    Article 

    Google Scholar 

  • Moeeni, H. & Bonakdari, H. Impact of normalization and input on ARMAX-ANN model performance in suspended sediment load prediction. Water Resour. Manage. 32, 845–863 (2018).

    Article 

    Google Scholar 

  • Myronidis, D., Ioannou, K., Fotakis, D. & Dörflinger, G. Streamflow and hydrological drought trend analysis and forecasting in Cyprus. Water Resour. Manage. 32, 1759–1776 (2018).

    Article 

    Google Scholar 

  • Wang, W., Chau, K., Xu, D. & Chen, X.-Y. Improving forecasting accuracy of annual runoff time series using ARIMA based on EEMD decomposition. Water Resour. Manage. 29, 2655–2675 (2015).

    Article 

    Google Scholar 

  • Ghamariadyan, M. & Imteaz, M. A. A wavelet artificial neural network method for medium-term rainfall prediction in Queensland (Australia) and the comparisons with conventional methods. Int. J. Climatol. 41, E1396–E1416 (2021).

    Article 

    Google Scholar 

  • Aziz, M. A., Imteaz, M., Choudhury, T. A. & Phillips, D. Applicability of artificial neural network in hydraulic experiments using a new sewer overflow screening device. Australas. J. Water Resour. 17, 77–86 (2013).

    Article 

    Google Scholar 

  • Ghorbani, M. A., Jabehdar, M. A., Yaseen, Z. M. & Inyurt, S. Solving the Pan Evaporation Process Complexity Using the Development of Multiple Mode of Neurocomputing Models (2021).

  • Sudheer, K. P., Gosain, A. K., Mohana Rangan, D. & Saheb, S. M. Modelling evaporation using an artificial neural network algorithm. Hydrol. Process. 16, 3189–3202 (2002).

    ADS 
    Article 

    Google Scholar 

  • Abed, M. M., El-Shafie, A. & Osman, S. A. B. Creep predicting model in masonry structure utilizing dynamic neural network. J. Comput. Sci. 6, 597 (2010).

    Article 

    Google Scholar 

  • Ashrafzadeh, A., Ghorbani, M. A., Biazar, S. M. & Yaseen, Z. M. Evaporation process modelling over northern Iran: Application of an integrative data-intelligence model with the krill herd optimization algorithm. Hydrol. Sci. J. 64, 1843–1856 (2019).

    Article 

    Google Scholar 

  • Castellano-Méndez, M., González-Manteiga, W., Febrero-Bande, M., Prada-Sánchez, J. M. & Lozano-Calderón, R. Modelling of the monthly and daily behaviour of the runoff of the Xallas river using Box-Jenkins and neural networks methods. J. Hydrol. 296, 38–58 (2004).

    ADS 
    Article 

    Google Scholar 

  • Ashrafzadeh, A., Malik, A., Jothiprakash, V., Ghorbani, M. A. & Biazar, S. M. Estimation of daily pan evaporation using neural networks and meta-heuristic approaches. ISH J. Hydraul. Eng. 26, 421–429 (2020).

    Article 

    Google Scholar 

  • Malik, A. et al. Modeling monthly pan evaporation process over the Indian central Himalayas: Application of multiple learning artificial intelligence model. Eng. Appl. Comput. Fluid Mech. 14, 323–338 (2020).

    ADS 

    Google Scholar 

  • Abudu, S., Cui, C., King, J. P., Moreno, J. & Bawazir, A. S. Modeling of daily pan evaporation using partial least squares regression. Sci. China Technol. Sci. 54, 163–174 (2011).

    ADS 
    Article 

    Google Scholar 

  • Tabari, H., Marofi, S. & Sabziparvar, A.-A. Estimation of daily pan evaporation using artificial neural network and multivariate non-linear regression. Irrig. Sci. 28, 399–406 (2010).

    Article 

    Google Scholar 

  • Keskin, M. E. & Terzi, Ö. Artificial neural network models of daily pan evaporation. J. Hydrol. Eng. 11, 65–70 (2006).

    Article 

    Google Scholar 

  • Kişi, Ö. Evolutionary neural networks for monthly pan evaporation modeling. J. Hydrol. 498, 36–45 (2013).

    ADS 
    Article 

    Google Scholar 

  • Deo, R. C., Samui, P. & Kim, D. Estimation of monthly evaporative loss using relevance vector machine, extreme learning machine and multivariate adaptive regression spline models. Stoch. Environ. Res. Risk Assess. 30, 1769–1784 (2016).

    Article 

    Google Scholar 

  • Falamarzi, Y., Palizdan, N., Huang, Y. F. & Lee, T. S. Estimating evapotranspiration from temperature and wind speed data using artificial and wavelet neural networks (WNNs). Agric. Water Manage. 140, 26–36 (2014).

    Article 

    Google Scholar 

  • Wang, L., Kisi, O., Zounemat-Kermani, M. & Li, H. Pan evaporation modeling using six different heuristic computing methods in different climates of China. J. Hydrol. 544, 407–427 (2017).

    ADS 
    Article 

    Google Scholar 

  • Malik, A., Kumar, A. & Kisi, O. Monthly pan-evaporation estimation in Indian central Himalayas using different heuristic approaches and climate based models. Comput. Electron. Agric. 143, 302–313 (2017).

    Article 

    Google Scholar 

  • Tezel, G. & Buyukyildiz, M. Monthly evaporation forecasting using artificial neural networks and support vector machines. Theor. Appl. Climatol. 124, 69–80 (2016).

    ADS 
    Article 

    Google Scholar 

  • Alipour, A., Yarahmadi, J. & Mahdavi, M. Comparative study of M5 model tree and artificial neural network in estimating reference evapotranspiration using MODIS products. J. Climatol. 2014, 1–11 (2014).

    Article 

    Google Scholar 

  • Hassan, M. A., Khalil, A., Kaseb, S. & Kassem, M. A. Exploring the potential of tree-based ensemble methods in solar radiation modeling. Appl. Energy 203, 897–916 (2017).

    Article 

    Google Scholar 

  • Fan, J. et al. Evaluation of SVM, ELM and four tree-based ensemble models for predicting daily reference evapotranspiration using limited meteorological data in different climates of China. Agric. For. Meteorol. 263, 225–241 (2018).

    ADS 
    Article 

    Google Scholar 

  • Francke, T., López-Tarazón, J. A. & Schröder, B. Estimation of suspended sediment concentration and yield using linear models, random forests and quantile regression forests. Hydrol. Process. Int. J. 22, 4892–4904 (2008).

    ADS 
    Article 

    Google Scholar 

  • Feng, Y., Cui, N., Gong, D., Zhang, Q. & Zhao, L. Evaluation of random forests and generalized regression neural networks for daily reference evapotranspiration modelling. Agric. Water Manage. 193, 163–173 (2017).

    Article 

    Google Scholar 

  • LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Zhao, Z., Chen, W., Wu, X., Chen, P. C. Y. & Liu, J. LSTM network: A deep learning approach for short-term traffic forecast. IET Intell. Transp. Syst. 11, 68–75 (2017).

    Article 

    Google Scholar 

  • Krizhevsky, A., Sutskever, I. & Hinton, G. E. ImageNet classification with deep convolutional neural networks. Commun. ACM 60, 84–90 (2017).

    Article 

    Google Scholar 

  • Wang, Z., Yan, W. & Oates, T. Time series classification from scratch with deep neural networks: A strong baseline. In 2017 International Joint Conference on Neural Networks (IJCNN), 1578–1585 (IEEE, 2017).

  • Lee, H., Pham, P., Largman, Y. & Ng, A. Unsupervised feature learning for audio classification using convolutional deep belief networks. Adv. Neural Inf. Process. Syst. 22, 1096–1104 (2009).

    Google Scholar 

  • Gao, Y., Hendricks, L. A., Kuchenbecker, K. J. & Darrell, T. Deep learning for tactile understanding from visual and haptic data. In 2016 IEEE International Conference on Robotics and Automation (ICRA), 536–543 (IEEE, 2016).

  • Liu, J. N. K., Hu, Y., You, J. J. & Chan, P. W. Deep neural network based feature representation for weather forecasting. In Proc. International Conference on Artificial Intelligence (ICAI), 1 (The Steering Committee of The World Congress in Computer Science, Computer, 2014).

  • Koprinska, I., Wu, D. & Wang, Z. Convolutional neural networks for energy time series forecasting. In 2018 International Joint Conference on Neural Networks (IJCNN), 1–8 (IEEE, 2018).

  • Biazar, S. M., Ghorbani, M. A. L. I. & Shahedi, K. Uncertainty of artificial neural networks for daily evaporation prediction (case study: Rasht and Manjil Stations). J. Watershed Manage. Res. 10, 1–12 (2019).

    Article 

    Google Scholar 

  • Shaaban, A. J. & Low, K. S. Droughts in Malaysia: A look at its characteristics, impacts, related policies and management strategies. In Water and Drainage 2003 Conference, 28–29 (2003).

  • Yaseen, Z. M., El-Shafie, A., Jaafar, O., Afan, H. A. & Sayl, K. N. Artificial intelligence based models for stream-flow forecasting: 2000–2015. J. Hydrol. 530, 829–844 (2015).

    ADS 
    Article 

    Google Scholar 

  • Abed, M., Imteaz, M. A., Ahmed, A. N. & Huang, Y. F. Application of long short-term memory neural network technique for predicting monthly pan evaporation. Sci. Rep. 11, 1–19 (2021).

    Article 
    CAS 

    Google Scholar 

  • Freedman, D., Pisani, R., Purves, R. & Adhikari, A. Statistics (2007).

  • Hauke, J. & Kossowski, T. Comparison of Values of Pearson’s and Spearman’s Correlation Coefficient on the Same Sets of Data (2011).

  • Dalkiliç, Y., Okkan, U. & Baykan, N. Comparison of different ANN approaches in daily pan evaporation prediction. J. Water Resour. Prot. 6, 319 (2014).

    Article 

    Google Scholar 

  • Wang, L., Kisi, O., Zounemat-Kermani, M. & Gan, Y. Comparison of six different soft computing methods in modeling evaporation in different climates. Hydrol. Earth Syst. Sci. Discuss. https://doi.org/10.5194/hess-2016-247 (2016).

  • Zakaria, M. N. A., Malek, M. A., Zolkepli, M. & Ahmed, A. N. Application of artificial intelligence algorithms for hourly river level forecast: A case study of Muda River, Malaysia. Alexand. Eng. J. 60, 4015–4028 (2021).

    Article 

    Google Scholar 

  • Rosenberry, D. O., Stannard, D. I., Winter, T. C. & Martinez, M. L. Comparison of 13 equations for determining evapotranspiration from a prairie wetland, Cottonwood Lake area, North Dakota, USA. Wetlands 24, 483–497 (2004).

    Article 

    Google Scholar 

  • Stephens, J. C. & Stewart, E. H. A comparison of procedures for computing evaporation and evapotranspiration. Publication 62, 123–133 (1963).

    Google Scholar 

  • Thornthwaite, C. W. An approach toward a rational classification of climate. Geogr. Rev. 38, 55–94 (1948).

    Article 

    Google Scholar 

  • Liaw, A. & Wiener, M. Classification and regression by Random Forest. R News 2, 18–22 (2002).

    Google Scholar 

  • Breiman, L. Random Forests. Mach. Learn. 45, 5–32 (2001).

    MATH 
    Article 

    Google Scholar 

  • Peters, J. et al. Random forests as a tool for ecohydrological distribution modelling. Ecol. Modell. 207, 304–318 (2007).

    Article 

    Google Scholar 

  • Wang, Z. et al. Flood hazard risk assessment model based on random forest. J. Hydrol. 527, 1130–1141 (2015).

    Article 

    Google Scholar 

  • Ouedraogo, I., Defourny, P. & Vanclooster, M. Application of random forest regression and comparison of its performance to multiple linear regression in modeling groundwater nitrate concentration at the African continent scale. Hydrogeol. J. 27, 1081–1098 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Nair, V. & Hinton, G. E. Rectified linear units improve restricted boltzmann machines. In Icml (2010).

  • LeCun, Y., Bottou, L., Bengio, Y. & Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 86, 2278–2324 (1998).

    Article 

    Google Scholar 

  • Gu, J. et al. Recent advances in convolutional neural networks. Pattern Recognit. 77, 354–377 (2018).

    ADS 
    Article 

    Google Scholar 

  • Volpi, M. & Tuia, D. Dense semantic labeling of subdecimeter resolution images with convolutional neural networks. IEEE Trans. Geosci. Remote Sens. 55, 881–893 (2016).

    ADS 
    Article 

    Google Scholar 

  • Springenberg, J. T., Dosovitskiy, A., Brox, T. & Riedmiller, M. Striving for simplicity: The all convolutional net. Preprint at http://arXiv.org/1412.6806 (2014).

  • Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization. Preprint at http://arXiv.org/1412.6980 (2014).

  • Taylor, K. E. Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res. Atmos. 106, 7183–7192 (2001).

    ADS 
    Article 

    Google Scholar 

  • Change, I. C. The physical science basis. In Contrib. Work. Gr. I to Fourth Assess. Rep. Intergov. Panel Clim. Change, Vol. 996 (2007).

  • Majhi, B., Naidu, D., Mishra, A. P. & Satapathy, S. C. Improved prediction of daily pan evaporation using deep-LSTM model. Neural Comput. Appl. 32, 7823–7838 (2020).

    Article 

    Google Scholar 

  • Abed, M., Imteaz, M. & Ali Najah Ahmed, Y. F. H. Improved prediction of monthly pan evaporation utilising support vector machine technique. In The Asia-Pacific Conference on Computer Science and Data Engineering 2021 (IEEE).

  • Related posts:

    1. Predicting tissue-specific gene expression from complete blood transcriptome
    2. MRI biomarker to foretell LNM in T3 stage rectal carcinoma
    3. Medical Components Related to Excessive Glycemic Variability Outlined by
    4. Significance of RDW in predicting mortality in COVID‐19—An evaluation of 622 circumstances – Soni – – Worldwide Journal of Laboratory Hematology

    Categories

    • Coefficient of Variation
    • Debt
    • MSCIWI
    • Nasdaq
    • Temporal
    • Terms and Conditions
    • Privacy Policy