SWVRC Fianance, Loans & Debt

Main Menu

  • Home
  • Coefficient of Variation
  • Temporal
  • Nasdaq
  • MSCIWI
  • Debt

SWVRC Fianance, Loans & Debt

Header Banner

SWVRC Fianance, Loans & Debt

  • Home
  • Coefficient of Variation
  • Temporal
  • Nasdaq
  • MSCIWI
  • Debt
Coefficient of Variation
Home›Coefficient of Variation›Measuring haemolysis in cattle serum by direct UV–VIS and RGB digital image-based methods

Measuring haemolysis in cattle serum by direct UV–VIS and RGB digital image-based methods

By Maureen Bellinger
August 8, 2022
0
0
  • Simundic, A. M., Baird, G., Cadamuro, J., Costelloe, S. J. & Lippi, G. Managing hemolyzed samples in clinical laboratories. Crit. Rev. Clin. Lab. Sci. 57, 1–21 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Lippi, G., Cadamuro, J., Von Meyer, A. & Simundic, A. M. Practical recommendations for managing hemolyzed samples in clinical chemistry testing. Clin. Chem. Lab. Med. 56, 718–727 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Braun, J. P., Bourgès-Abella, N., Geffré, A., Concordet, D. & Trumel, C. The preanalytic phase in veterinary clinical pathology. Vet. Clin. Pathol. 44, 8–25 (2015).

    PubMed 
    Article 

    Google Scholar 

  • Šimundić, A. M., Nikolac, N. & Guder, W. G. Preanalytical variation and preexamination processes. In Tietz Textbook of Clinical Chemistry and Molecular Diagnostics (eds Rifai, N. et al.) 81–94 (Elsevier, 2018).

    Google Scholar 

  • Di Martino, G. et al. The degree of acceptability of swine blood values at increasing levels of hemolysis evaluated through visual inspection versus automated quantification. J. Vet. Diagn. Investig. 27, 306–312 (2015).

    Article 

    Google Scholar 

  • Jacobs, R. M., Lumsden, J. H. & Grift, E. Effects of bilirubinemia, hemolysis, and lipemia on clinical chemistry analytes in bovine, canine, equine, and feline sera. Can. Vet. J. 33, 605–608 (1992).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Killilea, D. W. et al. Identification of a hemolysis threshold that increases plasma and serum zinc concentration. J. Nutr. 147, 1218–1225 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Koseoglu, M., Hur, A., Atay, A. & Çuhadar, S. Effects of hemolysis interferences on routine biochemistry parameters. Biochem. Medica 21, 79–85 (2011).

    CAS 
    Article 

    Google Scholar 

  • Leard, B. L., Alsaker, R. D., Porter, W. P. & Sobel, L. P. The effect of haemolysis on certain canine serum chemistry parameters. Lab. Anim. 24, 32–35 (1990).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • O’Neill, S. L. & Feldman, B. F. Hemolysis as a factor in clinical chemistry and hematology of the dog. Vet. Clin. Pathol. 18, 58–68 (1989).

    PubMed 
    Article 

    Google Scholar 

  • Larrán, B. et al. Influence of haemolysis on the mineral profile of cattle serum. Anim. 11, 3336 (2021).

    Article 

    Google Scholar 

  • Sodi, R., Darn, S. M., Davison, A. S., Stott, A. & Shenkin, A. Mechanism of interference by haemolysis in the cardiac troponin T immunoassay. Ann. Clin. Biochem. 43, 49–56 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Nougier, C., Jousselme, E., Sobas, F., Pousseur, V. & Négrier, C. Effects of hemolysis, bilirubin, and lipemia interference on coagulation tests detected by two analytical systems. Int. J. Lab. Hematol. 42, 88–94 (2020).

    PubMed 
    Article 

    Google Scholar 

  • Hawkins, R. Discrepancy between visual and spectrophotometric assessment of sample haemolysis. Ann. Clin. Biochem. 42, 521–522 (2002).

    Article 

    Google Scholar 

  • Simundic, A. M. et al. Comparison of visual vs. automated detection of lipemic, icteric and hemolyzed specimens: Can we rely on a human eye?. Clin. Chem. Lab. Med. 47, 1361–1365 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • Luksic, A. H. et al. Visual assessment of hemolysis affects patient safety. Clin. Chem. Lab. Med. 56, 574–581 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Lippi, G. & Cadamuro, J. Visual assessment of sample quality: Quo usque tandem?. Clin. Chem. Lab. Med. 56, 513–515 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Gómez Rioja, R. et al. Hemólisis en las muestras para diagnóstico. Rev. del Lab. Clin. 2, 185–195 (2009).

    Google Scholar 

  • Lippi, G. Systematic assessment of the Hemolysis index: Pros and cons. Adv. Clin. Chem. 71, 157–170 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Directive 2010/63/EU of the European Parliament and of the Council of 22 September 2010 on the protection of animals used for scientific purposes https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A02010L0063-20190626 (2010).

  • Real Decreto 53/2013, de 1 de febrero, por el que se establecen las normas básicas aplicables para la protección de los animales utilizados en experimentación y otros fines científicos, incluyendo la docencia. https://www.boe.es/buscar/act.php?id=BOE-A-2013-1337 (2013).

  • Jerry Kaneko, J., Harvey, J. J. & Bruss, M. L. Clinical Biochemistry of Domestic Animals (Academic Press, 2008).

    Google Scholar 

  • Herrero-Latorre, C., Barciela-García, J., García-Martín, S. & Peña-Crecente, R. M. Detection and quantification of adulterations in aged wine using RGB digital images combined with multivariate chemometric techniques. Food Chem. X 3, 100046 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Geladi, P. & Kowalski, B. R. Partial least-squares regression: A tutorial. Anal. Chim. Acta 185, 1–17 (1986).

    CAS 
    Article 

    Google Scholar 

  • Zupan, J. & Gasteiger, J. Neural Networks for Chemistry and Drug Design: An Introduction (Wiley-VCH, 1999).

    Google Scholar 

  • Vabalas, A. Machine learning algorithm validation with a limited sample size. PLoS ONE 14, e0224365 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • International Committee for Standardization in Haematology. Br. J. Haematol. 13, 71–75 (1967).

    Article 

    Google Scholar 

  • van Kampen, E. J. & Zijlstra, W. G. Standardization of hemoglobinometry II. The hemiglobincyanide method. Clin. Chim. Acta 6, 538–544 (1961).

    PubMed 
    Article 

    Google Scholar 

  • Srivastava, T., Negandhi, H., Neogi, S. B., Sharma, J. & Saxena, R. Methods for hemoglobin estimation: A review of “what works”. J. Hematol. Transfus. 2, 2005–2006 (2014).

    Google Scholar 

  • Smith, M. B. et al. Hemolysis, icterus and lipemia/turbidity indices as indicators of interference in clinical laboratory analysis. Clin. Lab. Stand. Inst. 32, 1–35 (2012).

    Google Scholar 

  • Malinauskas, R. A. Plasma hemoglobin measurement techniques for the in vitro evaluation of blood damage caused by medical devices. Artif. Organs 21, 1255–1267 (1997).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Roggan, A., Friebel, M., Dörschel, K., Hahn, A. & Müller, G. Optical properties of circulating human blood in the wavelength range 400–2500 nm. J. Biomed. Opt. 4, 36–46 (1999).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Taparia, N., Platten, K. C., Anderson, K. B. & Sniadecki, N. J. A microfluidic approach for hemoglobin detection in whole blood. AIP Adv. 7, 105102 (2017).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • Merchant, M., Hammack, T., Sanders, P. & Dronette, J. Rapid and inexpensive method for the spectroscopic determination of innate immune activity of crocodilians. Spectrosc. Lett. 39, 337–343 (2006).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Vieira, T. O. & Diré, G. F. Spectrophotometric and hemolytic analysis of an extract of Costus spicatus. EJBMSR 3, 29–58 (2015).

    Google Scholar 

  • Shah, J. S., Soon, P. S. & Marsh, D. J. Comparison of methodologies to detect low levels of hemolysis in serum for accurate assessment of serum microRNAs. PLoS ONE 11, e0153200 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Liu, P., Zhu, Z., Zeng, C. & Nie, G. Specific absorption spectra of hemoglobin at different PO2 levels: Potential noninvasive method to detect PO2 in tissues. J. Biomed. Opt. 17, 125002 (2012).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Zijlstra, W. G. & Buursma, A. Spectrophotometry of hemoglobin: Absorption spectra of bovine oxyhemoglobin, deoxyhemoglobin, carboxyhemoglobin, and methemoglobin. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 118, 743–749 (1997).

    Article 

    Google Scholar 

  • Vallejos, S. et al. Solid sensory polymer substrates for the quantification of iron in blood, wine and water by a scalable RGB technique. J. Mater. Chem. A 1, 15435–15441 (2013).

    CAS 
    Article 

    Google Scholar 

  • Andrew, W., Hannuna, S., Campbell, N. & Burghardt, T. Automatic individual holstein friesian cattle identification via selective local coat pattern matching in RGB-D imagery. In Proceedings of the IEEE International Conference on Image Processing (ICIP) vols 2016-August 484–488 (IEEE Computer Society, 2016).

  • Bhole, A., Falzon, O., Biehl, M. & Azzopardi, G. A computer vision pipeline that uses thermal and RGB images for the recognition of Holstein cattle. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) Vol. 11679 108–119 (Springer Verlag, 2019).

  • Jorquera-Chavez, M. et al. Modelling and validation of computer vision techniques to assess heart rate, eye temperature, ear-base temperature and respiration rate in cattle. Animals 9, 1089 (2019).

    PubMed Central 
    Article 

    Google Scholar 

  • Philipsen, M. P., Dueholm, J. V., Jørgensen, A., Escalera, S. & Moeslund, T. B. Organ segmentation in poultry viscera using RGB-D. Sensors (Switzerland) 18, 117 (2018).

    ADS 
    Article 

    Google Scholar 

  • Lee, K., Baek, S., Kim, D. & Seo, J. A freshness indicator for monitoring chicken-breast spoilage using a Tyvek® sheet and RGB color analysis. Food Packag. Shelf Life 19, 40–46 (2019).

    Article 

    Google Scholar 

  • Tyburski, E. A. et al. Disposable platform provides visual and color-based point-of-care anemia self-testing. J. Clin. Invest. 124, 4387–4394 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Edwards, P. et al. Smartphone based optical spectrometer for diffusive reflectance spectroscopic measurement of hemoglobin. Sci. Rep. 7(1), 12224 https://doi.org/10.1038/s41598-017-12482-5 (2017).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Collings, S. et al. Non-invasive detection of anaemia using digital photographs of the conjunctiva. PLoS ONE 11, e0153286 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Hasan, M. K., Sakib, N., Love, R. R. & Ahamed, S. I. RGB pixel analysis of fingertip video image captured from sickle cell patient with low and high level of hemoglobin in 2017 IEEE 8th Annual Ubiquitous Computing, Electronics and Mobile Communication Conference, UEMCON 2017 Vol. 2018 499–505 (Institute of Electrical and Electronics Engineers Inc., 2017).

  • Noriega, L. M., Rojas, P. W. & Silva, A. S. Hemoglobin screening using cloud-based mobile photography applications. Ing. y Univ. 23(2), 1–22 https://doi.org/10.11144/Javeriana.iyu23-2.hsuc (2019).

    Article 

    Google Scholar 

  • Jayakody, J. A. D. C. A., Edirisinghe, E. A. G. A. & Lokuliyana, S. HemoSmart: A non‐invasive device and mobile app for anemia detection. In Cognitive Engineering for Next Generation Computing 93–119 (Wiley, 2021). doi:https://doi.org/10.1002/9781119711308.ch3

  • Rajmanova, P., Vala, D. & Slanina, Z. Detection of haemolytic transfusion bagsin IFAC Proceedings Volumes (IFAC-PapersOnline) vol. 12 400–404 (IFAC Secretariat, 2013).

  • Archibong, E., Konnaiyan, K. R., Kaplan, H. & Pyayt, A. A mobile phone-based approach to detection of hemolysis. Biosens. Bioelectron. 88, 204–209 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Lopes, K. M. et al. Portable device for measuring blood test hemolyzed samples based on computer vision and neural network. J. Med. Devices Trans. ASME 13, 1–25 (2019).

    Google Scholar 

  • Kim, T. et al. Toward laboratory blood test-comparable photometric assessments for anemia in veterinary hematology. J. Biomed. Opt. 21, 107001 (2016).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • Related posts:

    1. Predicting tissue-specific gene expression from complete blood transcriptome
    2. MRI biomarker to foretell LNM in T3 stage rectal carcinoma
    3. Medical Components Related to Excessive Glycemic Variability Outlined by
    4. Significance of RDW in predicting mortality in COVID‐19—An evaluation of 622 circumstances – Soni – – Worldwide Journal of Laboratory Hematology

    Categories

    • Coefficient of Variation
    • Debt
    • MSCIWI
    • Nasdaq
    • Temporal
    • Terms and Conditions
    • Privacy Policy