SWVRC Fianance, Loans & Debt

Main Menu

  • Home
  • Coefficient of Variation
  • Temporal
  • Nasdaq
  • MSCIWI
  • Debt

SWVRC Fianance, Loans & Debt

Header Banner

SWVRC Fianance, Loans & Debt

  • Home
  • Coefficient of Variation
  • Temporal
  • Nasdaq
  • MSCIWI
  • Debt
Coefficient of Variation
Home›Coefficient of Variation›Glutathione improves low temperature stress tolerance in pusa sheetal cultivar of Solanum lycopersicum

Glutathione improves low temperature stress tolerance in pusa sheetal cultivar of Solanum lycopersicum

By Maureen Bellinger
July 22, 2022
0
0
  • Bulgari, R., Franzoni, G. & Ferrante, A. Biostimulants application in horticultural crops under abiotic stress conditions. Agronomy 9, 306 (2019).

    CAS 

    Google Scholar 

  • Mickelbart, M. V., Hasegawa, P. M. & Bailey-Serres, J. Genetic mechanisms of abiotic stress tolerance that translate to crop yield stability. Nat. Rev. Genet. 16, 237–251 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Ruelland, E., Vaultier, M.-N., Zachowski, A. & Hurry, V. Cold signalling and cold acclimation in plants. Adv. Bot. Res. 49, 35–150. https://doi.org/10.1016/S0065-2296(08)00602-2 (2009).

    CAS 

    Google Scholar 

  • Jan, N. & Andrabi, K. I. Cold resistance in plants: A mystery unresolved. Electron. J. Biotechnol. 12, 14–15 (2009).

    Google Scholar 

  • Waraich, E. A., Ahmad, R., Halim, A. & Aziz, T. Alleviation of temperature stress by nutrient management in crop plants: A review. J. soil Sci. Plant Nutr. 12, 221–244 (2012).

    Google Scholar 

  • Hajihashemi, S., Noedoost, F., Geuns, J., Djalovic, I. & Siddique, K. H. M. Effect of cold stress on photosynthetic traits, carbohydrates, morphology, and anatomy in nine cultivars of Stevia rebaudiana. Front. Plant Sci. 9, 1430 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Decros, G. et al. Get the balance right: ROS homeostasis and redox signalling in fruit. Front. Plant Sci. 10, 1091 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Chang, J. et al. CBF-responsive pathway and phytohormones are involved in melatonin-improved photosynthesis and redox homeostasis under aerial cold stress in watermelon. Acta Physiol. Plant. 42, 159 (2020).

    CAS 

    Google Scholar 

  • Mostofa, M. G., Saegusa, D., Fujita, M. & Tran, L.-S.P. Hydrogen sulfide regulates salt tolerance in rice by maintaining Na+/K+ balance, mineral homeostasis and oxidative metabolism under excessive salt stress. Front. Plant Sci. 6, 1055 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Mostofa, M. G., Seraj, Z. I. & Fujita, M. Interactive effects of nitric oxide and glutathione in mitigating copper toxicity of rice (Oryza sativa L.) seedlings. Plant Signal. Behav. 10, e991570 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Nahar, K., Hasanuzzaman, M., Alam, M. M. & Fujita, M. Roles of exogenous glutathione in antioxidant defense system and methylglyoxal detoxification during salt stress in mung bean. Biol. Plant. 59, 745–756 (2015).

    CAS 

    Google Scholar 

  • Ge, C. et al. Effects of glutathione on the ripening quality of strawberry fruits. in AIP Conference Proceedings vol. 2079 20013 (AIP Publishing LLC, 2019).

  • Nahar, K., Hasanuzzaman, M., Alam, M. M. & Fujita, M. Glutathione-induced drought stress tolerance in mung bean: coordinated roles of the antioxidant defence and methylglyoxal detoxification systems. AoB Plants. https://doi.org/10.1093/aobpla/plv066 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wu, J. C., Sun, S. H., Ke, Y. T., Xie, C. P. & Chen, F. X. Effects of glutathione on chloroplast membrane fluidity and the glutathione circulation system in young loquat fruits under low temperature stress. In III International Symposium on Loquat 887 221–225 (2010).

  • Cuvi, M. J. A., Vicente, A. R., Concellón, A. & Chaves, A. R. Changes in red pepper antioxidants as affected by UV-C treatments and storage at chilling temperatures. LWT-Food Sci. Technol. 44, 1666–1671 (2011).

    Google Scholar 

  • Jin, X., Yang, X., Islam, E., Liu, D. & Mahmood, Q. Effects of cadmium on ultrastructure and antioxidative defense system in hyperaccumulator and non-hyperaccumulator ecotypes of Sedum alfredii Hance. J. Hazard. Mater. 156, 387–397 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • Zhang, F. et al. The ICE-CBF-COR pathway in cold acclimation and AFPs in plants. Middle East J. Sci. Res. 8, 493–498 (2011).

    Google Scholar 

  • Raiola, A., Rigano, M. M., Calafiore, R., Frusciante, L. & Barone, A. Enhancing the health-promoting effects of tomato fruit for biofortified food. Mediators Inflamm. https://doi.org/10.1155/2014/139873 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wolf, S., Yakir, D., Stevens, M. A. & Rudich, J. Cold temperature tolerance of wild tomato species. J. Am.
    Soc. Hort. Sci.
    111, 960–964 (1986).

    Google Scholar 

  • Foolad, M. R. & Lin, G. Y. Relationship between cold tolerance during seed germination and vegetative growth in tomato: Analysis of response and correlated response to selection. J. Am. Soc. Hortic. Sci. 126, 216–220 (2001).

    Google Scholar 

  • Tiwari, R. N., Choudhury, B. & Pachauri, D. C. ’Pusa Sheetal’can set fruit at low temperature. Indian Hortic. 35, 4–5 (1990).

    Google Scholar 

  • Myers, R. H., Montgomery, D. C. & Anderson-Cook, C. M. Response surface methodology: process and product optimization using designed experiments. (John Wiley & Sons, 2016).

  • Foolad, M. R. & Lin, G. Y. Relationship between cold tolerance during seed germination and vegetative growth in tomato: Germplasm evaluation. J. Am. Soc. Hortic. Sci. 125, 679–683 (2000).

    Google Scholar 

  • Boutraa, T., Akhkha, A., Al-Shoaibi, A. A. & Alhejeli, A. M. Effect of water stress on growth and water use efficiency (WUE) of some wheat cultivars (Triticum durum) grown in Saudi Arabia. J. Taibah Univ. Sci. 3, 39–48 (2010).

    Google Scholar 

  • Hellal, F. A. et al. Influence of PEG induced drought stress on molecular and biochemical constituents and seedling growth of Egyptian barley cultivars. J. Genet. Eng. Biotechnol. 16, 203–212 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Sohag, A. A. M. et al. Exogenous glutathione-mediated drought stress tolerance in Rice (Oryza sativa L.) is associated with lower oxidative damage and favorable ionic homeostasis. Iran. J. Sci. Technol. Trans. A Sci. 44, 955–971 (2020).

    Google Scholar 

  • Forni, C., Duca, D. & Glick, B. R. Mechanisms of plant response to salt and drought stress and their alteration by rhizobacteria. Plant Soil 410, 335–356 (2017).

    CAS 

    Google Scholar 

  • Vernoux, T. et al. The Root Meristemless1/Cadmium Sensitive2 gene defines a glutathione-dependent pathway involved in initiation and maintenance of cell division during postembryonic root development. Plant Cell 12, 97–109 (2000).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cheng, M.-C. et al. Increased glutathione contributes to stress tolerance and global translational changes in Arabidopsis. Plant J. 83, 926–939 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Akram, S. et al. Exogenous glutathione modulates salinity tolerance of soybean [Glycine max (L.) Merrill] at reproductive stage. J. Plant Growth Regul. 36, 877–888 (2017).

    CAS 

    Google Scholar 

  • Zaki, H. E. M. & Radwan, K. S. A. The use of osmoregulators and antioxidants to mitigate the adverse impacts of salinity stress in diploid and tetraploid potato genotypes (Solanum spp.). Chem. Biol. Technol. Agric. 9, 1–21 (2022).

    CAS 

    Google Scholar 

  • Pei, L. et al. Role of exogenous glutathione in alleviating abiotic stress in maize (Zea mays L.). J. Plant Growth Regul. 38, 199–215 (2019).

    CAS 

    Google Scholar 

  • Zaki, H. E. M. & Yokoi, S. A comparative in vitro study of salt tolerance in cultivated tomato and related wild species. Plant Biotechnol. 33, 16–1006 (2016).

    Google Scholar 

  • Ribeiro, R. V., Machado, E. C. & de Oliveira, R. F. Temperature response of photosynthesis and its interaction with light intensity in sweet orange leaf discs under non-photorespiratory condition. Ciência e Agrotecnologia 30, 670–678 (2006).

    Google Scholar 

  • Riva-Roveda, L., Escale, B., Giauffret, C. & Périlleux, C. Maize plants can enter a standby mode to cope with chilling stress. BMC Plant Biol. 16, 1–14 (2016).

    Google Scholar 

  • Schürmann, P. & Jacquot, J.-P. Plant thioredoxin systems revisited. Annu. Rev. Plant Biol. 51, 371–400 (2000).

    Google Scholar 

  • Pietrini, F., Iannelli, M. A., Pasqualini, S. & Massacci, A. Interaction of cadmium with glutathione and photosynthesis in developing leaves and chloroplasts of Phragmites australis (Cav.) Trin. ex Steudel. Plant Physiol. 133, 829–837 (2003).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, F., Chen, F., Cai, Y., Zhang, G. & Wu, F. Modulation of exogenous glutathione in ultrastructure and photosynthetic performance against Cd stress in the two barley genotypes differing in Cd tolerance. Biol. Trace Elem. Res. 144, 1275–1288 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • Noctor, G. & Foyer, C. H. Ascorbate and glutathione: Keeping active oxygen under control. Ann. Rev. Plant Physiol. Plant Mol. Biol. 49, 249–279 (1998).

    CAS 

    Google Scholar 

  • Kosower, N.S. & Kosower, E. M. The glutathione status of cells. Intl. Rev. Cytol. 54, 109–156 (1978).

    CAS 

    Google Scholar 

  • Hetherington, A. M. & Woodward, F. I. The role of stomata in sensing and driving environmental change. Nature 424, 901–908 (2003).

    CAS 
    PubMed 

    Google Scholar 

  • Willmer, C. & Fricker, M. Stomatal responses to environmental factors. In Stomata 126–191 (Springer, 1996).

  • Farquhar, G. D. & Sharkey, T. D. Stomatal conductance and photosynthesis. Ann. Rev. Plant Physiol. 33, 317–345 (1982).

    CAS 

    Google Scholar 

  • Lawson, T. & Blatt, M. R. Stomatal size, speed, and responsiveness impact on photosynthesis and water use efficiency. Plant Physiol. 164, 1556–1570 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Okuma, E. et al. Negative regulation of abscisic acid-induced stomatal closure by glutathione in Arabidopsis. J. Plant Physiol. 168, 2048–2055 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • Koramutla, M. K., Negi, M. & Ayele, B. T. Roles of glutathione in mediating abscisic acid signaling and its regulation of seed dormancy and drought tolerance. Genes (Basel) 12, 1620 (2021).

    CAS 

    Google Scholar 

  • Amin, H., Arain, B. A., Amin, F. & Surhio, M. A. Analysis of growth response and tolerance index of Glycine max (L.) Merr. under hexavalent chromium stress. Adv. Life Sci. 1, 231–241 (2014).

    Google Scholar 

  • Clemens, S. Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie 88, 1707–1719 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • Gill, S. S. et al. Glutathione and glutathione reductase: A boon in disguise for plant abiotic stress defense operations. Plant Physiol. Biochem. 70, 204–212 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Rahman, I., Kode, A. & Biswas, S. K. Assay for quantitative determination of glutathione and glutathione disulfide levels using enzymatic recycling method. Nat. Protoc. 1, 3159–3165 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • Hasanuzzaman, M., Nahar, K., Anee, T. I. & Fujita, M. Glutathione in plants: biosynthesis and physiological role in environmental stress tolerance. Physiol. Mol. Biol. Plants 23, 249–268 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gill, S. S. & Tuteja, N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 48, 909–930 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • Ramírez, L., Bartoli, C. G. & Lamattina, L. Glutathione and ascorbic acid protect Arabidopsis plants against detrimental effects of iron deficiency. J. Exp. Bot. 64, 3169–3178 (2013).

    PubMed 

    Google Scholar 

  • Muneer, S., Ahmad, J., Bashir, H., Moiz, S. & Qureshi, M. I. Studies to reveal importance of Fe for Cd tolerance in Brassica juncea. Int. J. Appl. Biotech. Biochem. 1, 321–338 (2011).

    Google Scholar 

  • Asgher, M. et al. Ethylene supplementation increases PSII efficiency and alleviates chromium-inhibited photosynthesis through increased nitrogen and sulfur assimilation in mustard. J. Plant Growth Regul. 37, 1300–1317 (2018).

    CAS 

    Google Scholar 

  • Dhindsa, R. S., Plumb-Dhindsa, P. & Thorpe, T. A. Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. J. Exp. Bot. 32, 93–101 (1981).

    CAS 

    Google Scholar 

  • Okuda, T., Matsuda, Y., Yamanaka, A. & Sagisaka, S. Abrupt increase in the level of hydrogen peroxide in leaves of winter wheat is caused by cold treatment. Plant Physiol. 97, 1265–1267 (1991).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Aebi, H. [13] catalase in vitro. Methods Enzymol. 105, 121–126 (1984).

    CAS 
    PubMed 

    Google Scholar 

  • Anderson, M. E. [70] Determination of glutathione and glutathione disulfide in biological samples. Methods Enzymol. 113, 548–555 (1985).

    CAS 
    PubMed 

    Google Scholar 

  • Nakano, Y. & Asada, K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant cell Physiol. 22, 867–880 (1981).

    CAS 

    Google Scholar 

  • Related posts:

    1. Predicting tissue-specific gene expression from complete blood transcriptome
    2. MRI biomarker to foretell LNM in T3 stage rectal carcinoma
    3. Medical Components Related to Excessive Glycemic Variability Outlined by
    4. Significance of RDW in predicting mortality in COVID‐19—An evaluation of 622 circumstances – Soni – – Worldwide Journal of Laboratory Hematology

    Categories

    • Coefficient of Variation
    • Debt
    • MSCIWI
    • Nasdaq
    • Temporal
    • Terms and Conditions
    • Privacy Policy