Glutathione improves low temperature stress tolerance in pusa sheetal cultivar of Solanum lycopersicum

Bulgari, R., Franzoni, G. & Ferrante, A. Biostimulants application in horticultural crops under abiotic stress conditions. Agronomy 9, 306 (2019).
Google Scholar
Mickelbart, M. V., Hasegawa, P. M. & Bailey-Serres, J. Genetic mechanisms of abiotic stress tolerance that translate to crop yield stability. Nat. Rev. Genet. 16, 237–251 (2015).
Google Scholar
Ruelland, E., Vaultier, M.-N., Zachowski, A. & Hurry, V. Cold signalling and cold acclimation in plants. Adv. Bot. Res. 49, 35–150. https://doi.org/10.1016/S0065-2296(08)00602-2 (2009).
Google Scholar
Jan, N. & Andrabi, K. I. Cold resistance in plants: A mystery unresolved. Electron. J. Biotechnol. 12, 14–15 (2009).
Waraich, E. A., Ahmad, R., Halim, A. & Aziz, T. Alleviation of temperature stress by nutrient management in crop plants: A review. J. soil Sci. Plant Nutr. 12, 221–244 (2012).
Hajihashemi, S., Noedoost, F., Geuns, J., Djalovic, I. & Siddique, K. H. M. Effect of cold stress on photosynthetic traits, carbohydrates, morphology, and anatomy in nine cultivars of Stevia rebaudiana. Front. Plant Sci. 9, 1430 (2018).
Google Scholar
Decros, G. et al. Get the balance right: ROS homeostasis and redox signalling in fruit. Front. Plant Sci. 10, 1091 (2019).
Google Scholar
Chang, J. et al. CBF-responsive pathway and phytohormones are involved in melatonin-improved photosynthesis and redox homeostasis under aerial cold stress in watermelon. Acta Physiol. Plant. 42, 159 (2020).
Google Scholar
Mostofa, M. G., Saegusa, D., Fujita, M. & Tran, L.-S.P. Hydrogen sulfide regulates salt tolerance in rice by maintaining Na+/K+ balance, mineral homeostasis and oxidative metabolism under excessive salt stress. Front. Plant Sci. 6, 1055 (2015).
Google Scholar
Mostofa, M. G., Seraj, Z. I. & Fujita, M. Interactive effects of nitric oxide and glutathione in mitigating copper toxicity of rice (Oryza sativa L.) seedlings. Plant Signal. Behav. 10, e991570 (2015).
Google Scholar
Nahar, K., Hasanuzzaman, M., Alam, M. M. & Fujita, M. Roles of exogenous glutathione in antioxidant defense system and methylglyoxal detoxification during salt stress in mung bean. Biol. Plant. 59, 745–756 (2015).
Google Scholar
Ge, C. et al. Effects of glutathione on the ripening quality of strawberry fruits. in AIP Conference Proceedings vol. 2079 20013 (AIP Publishing LLC, 2019).
Nahar, K., Hasanuzzaman, M., Alam, M. M. & Fujita, M. Glutathione-induced drought stress tolerance in mung bean: coordinated roles of the antioxidant defence and methylglyoxal detoxification systems. AoB Plants. https://doi.org/10.1093/aobpla/plv066 (2015).
Google Scholar
Wu, J. C., Sun, S. H., Ke, Y. T., Xie, C. P. & Chen, F. X. Effects of glutathione on chloroplast membrane fluidity and the glutathione circulation system in young loquat fruits under low temperature stress. In III International Symposium on Loquat 887 221–225 (2010).
Cuvi, M. J. A., Vicente, A. R., Concellón, A. & Chaves, A. R. Changes in red pepper antioxidants as affected by UV-C treatments and storage at chilling temperatures. LWT-Food Sci. Technol. 44, 1666–1671 (2011).
Jin, X., Yang, X., Islam, E., Liu, D. & Mahmood, Q. Effects of cadmium on ultrastructure and antioxidative defense system in hyperaccumulator and non-hyperaccumulator ecotypes of Sedum alfredii Hance. J. Hazard. Mater. 156, 387–397 (2008).
Google Scholar
Zhang, F. et al. The ICE-CBF-COR pathway in cold acclimation and AFPs in plants. Middle East J. Sci. Res. 8, 493–498 (2011).
Raiola, A., Rigano, M. M., Calafiore, R., Frusciante, L. & Barone, A. Enhancing the health-promoting effects of tomato fruit for biofortified food. Mediators Inflamm. https://doi.org/10.1155/2014/139873 (2014).
Google Scholar
Wolf, S., Yakir, D., Stevens, M. A. & Rudich, J. Cold temperature tolerance of wild tomato species. J. Am.
Soc. Hort. Sci. 111, 960–964 (1986).
Foolad, M. R. & Lin, G. Y. Relationship between cold tolerance during seed germination and vegetative growth in tomato: Analysis of response and correlated response to selection. J. Am. Soc. Hortic. Sci. 126, 216–220 (2001).
Tiwari, R. N., Choudhury, B. & Pachauri, D. C. ’Pusa Sheetal’can set fruit at low temperature. Indian Hortic. 35, 4–5 (1990).
Myers, R. H., Montgomery, D. C. & Anderson-Cook, C. M. Response surface methodology: process and product optimization using designed experiments. (John Wiley & Sons, 2016).
Foolad, M. R. & Lin, G. Y. Relationship between cold tolerance during seed germination and vegetative growth in tomato: Germplasm evaluation. J. Am. Soc. Hortic. Sci. 125, 679–683 (2000).
Boutraa, T., Akhkha, A., Al-Shoaibi, A. A. & Alhejeli, A. M. Effect of water stress on growth and water use efficiency (WUE) of some wheat cultivars (Triticum durum) grown in Saudi Arabia. J. Taibah Univ. Sci. 3, 39–48 (2010).
Hellal, F. A. et al. Influence of PEG induced drought stress on molecular and biochemical constituents and seedling growth of Egyptian barley cultivars. J. Genet. Eng. Biotechnol. 16, 203–212 (2018).
Google Scholar
Sohag, A. A. M. et al. Exogenous glutathione-mediated drought stress tolerance in Rice (Oryza sativa L.) is associated with lower oxidative damage and favorable ionic homeostasis. Iran. J. Sci. Technol. Trans. A Sci. 44, 955–971 (2020).
Forni, C., Duca, D. & Glick, B. R. Mechanisms of plant response to salt and drought stress and their alteration by rhizobacteria. Plant Soil 410, 335–356 (2017).
Google Scholar
Vernoux, T. et al. The Root Meristemless1/Cadmium Sensitive2 gene defines a glutathione-dependent pathway involved in initiation and maintenance of cell division during postembryonic root development. Plant Cell 12, 97–109 (2000).
Google Scholar
Cheng, M.-C. et al. Increased glutathione contributes to stress tolerance and global translational changes in Arabidopsis. Plant J. 83, 926–939 (2015).
Google Scholar
Akram, S. et al. Exogenous glutathione modulates salinity tolerance of soybean [Glycine max (L.) Merrill] at reproductive stage. J. Plant Growth Regul. 36, 877–888 (2017).
Google Scholar
Zaki, H. E. M. & Radwan, K. S. A. The use of osmoregulators and antioxidants to mitigate the adverse impacts of salinity stress in diploid and tetraploid potato genotypes (Solanum spp.). Chem. Biol. Technol. Agric. 9, 1–21 (2022).
Google Scholar
Pei, L. et al. Role of exogenous glutathione in alleviating abiotic stress in maize (Zea mays L.). J. Plant Growth Regul. 38, 199–215 (2019).
Google Scholar
Zaki, H. E. M. & Yokoi, S. A comparative in vitro study of salt tolerance in cultivated tomato and related wild species. Plant Biotechnol. 33, 16–1006 (2016).
Ribeiro, R. V., Machado, E. C. & de Oliveira, R. F. Temperature response of photosynthesis and its interaction with light intensity in sweet orange leaf discs under non-photorespiratory condition. Ciência e Agrotecnologia 30, 670–678 (2006).
Riva-Roveda, L., Escale, B., Giauffret, C. & Périlleux, C. Maize plants can enter a standby mode to cope with chilling stress. BMC Plant Biol. 16, 1–14 (2016).
Schürmann, P. & Jacquot, J.-P. Plant thioredoxin systems revisited. Annu. Rev. Plant Biol. 51, 371–400 (2000).
Pietrini, F., Iannelli, M. A., Pasqualini, S. & Massacci, A. Interaction of cadmium with glutathione and photosynthesis in developing leaves and chloroplasts of Phragmites australis (Cav.) Trin. ex Steudel. Plant Physiol. 133, 829–837 (2003).
Google Scholar
Wang, F., Chen, F., Cai, Y., Zhang, G. & Wu, F. Modulation of exogenous glutathione in ultrastructure and photosynthetic performance against Cd stress in the two barley genotypes differing in Cd tolerance. Biol. Trace Elem. Res. 144, 1275–1288 (2011).
Google Scholar
Noctor, G. & Foyer, C. H. Ascorbate and glutathione: Keeping active oxygen under control. Ann. Rev. Plant Physiol. Plant Mol. Biol. 49, 249–279 (1998).
Google Scholar
Kosower, N.S. & Kosower, E. M. The glutathione status of cells. Intl. Rev. Cytol. 54, 109–156 (1978).
Google Scholar
Hetherington, A. M. & Woodward, F. I. The role of stomata in sensing and driving environmental change. Nature 424, 901–908 (2003).
Google Scholar
Willmer, C. & Fricker, M. Stomatal responses to environmental factors. In Stomata 126–191 (Springer, 1996).
Farquhar, G. D. & Sharkey, T. D. Stomatal conductance and photosynthesis. Ann. Rev. Plant Physiol. 33, 317–345 (1982).
Google Scholar
Lawson, T. & Blatt, M. R. Stomatal size, speed, and responsiveness impact on photosynthesis and water use efficiency. Plant Physiol. 164, 1556–1570 (2014).
Google Scholar
Okuma, E. et al. Negative regulation of abscisic acid-induced stomatal closure by glutathione in Arabidopsis. J. Plant Physiol. 168, 2048–2055 (2011).
Google Scholar
Koramutla, M. K., Negi, M. & Ayele, B. T. Roles of glutathione in mediating abscisic acid signaling and its regulation of seed dormancy and drought tolerance. Genes (Basel) 12, 1620 (2021).
Google Scholar
Amin, H., Arain, B. A., Amin, F. & Surhio, M. A. Analysis of growth response and tolerance index of Glycine max (L.) Merr. under hexavalent chromium stress. Adv. Life Sci. 1, 231–241 (2014).
Clemens, S. Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie 88, 1707–1719 (2006).
Google Scholar
Gill, S. S. et al. Glutathione and glutathione reductase: A boon in disguise for plant abiotic stress defense operations. Plant Physiol. Biochem. 70, 204–212 (2013).
Google Scholar
Rahman, I., Kode, A. & Biswas, S. K. Assay for quantitative determination of glutathione and glutathione disulfide levels using enzymatic recycling method. Nat. Protoc. 1, 3159–3165 (2006).
Google Scholar
Hasanuzzaman, M., Nahar, K., Anee, T. I. & Fujita, M. Glutathione in plants: biosynthesis and physiological role in environmental stress tolerance. Physiol. Mol. Biol. Plants 23, 249–268 (2017).
Google Scholar
Gill, S. S. & Tuteja, N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 48, 909–930 (2010).
Google Scholar
Ramírez, L., Bartoli, C. G. & Lamattina, L. Glutathione and ascorbic acid protect Arabidopsis plants against detrimental effects of iron deficiency. J. Exp. Bot. 64, 3169–3178 (2013).
Google Scholar
Muneer, S., Ahmad, J., Bashir, H., Moiz, S. & Qureshi, M. I. Studies to reveal importance of Fe for Cd tolerance in Brassica juncea. Int. J. Appl. Biotech. Biochem. 1, 321–338 (2011).
Asgher, M. et al. Ethylene supplementation increases PSII efficiency and alleviates chromium-inhibited photosynthesis through increased nitrogen and sulfur assimilation in mustard. J. Plant Growth Regul. 37, 1300–1317 (2018).
Google Scholar
Dhindsa, R. S., Plumb-Dhindsa, P. & Thorpe, T. A. Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. J. Exp. Bot. 32, 93–101 (1981).
Google Scholar
Okuda, T., Matsuda, Y., Yamanaka, A. & Sagisaka, S. Abrupt increase in the level of hydrogen peroxide in leaves of winter wheat is caused by cold treatment. Plant Physiol. 97, 1265–1267 (1991).
Google Scholar
Aebi, H. [13] catalase in vitro. Methods Enzymol. 105, 121–126 (1984).
Google Scholar
Anderson, M. E. [70] Determination of glutathione and glutathione disulfide in biological samples. Methods Enzymol. 113, 548–555 (1985).
Google Scholar
Nakano, Y. & Asada, K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant cell Physiol. 22, 867–880 (1981).
Google Scholar