SWVRC Fianance, Loans & Debt

Main Menu

  • Home
  • Coefficient of Variation
  • Temporal
  • Nasdaq
  • MSCIWI
  • Debt

SWVRC Fianance, Loans & Debt

Header Banner

SWVRC Fianance, Loans & Debt

  • Home
  • Coefficient of Variation
  • Temporal
  • Nasdaq
  • MSCIWI
  • Debt
Coefficient of Variation
Home›Coefficient of Variation›Determination of reference genes as a quantitative standard for gene expression analysis in mouse mesangial cells stimulated with TGF-β

Determination of reference genes as a quantitative standard for gene expression analysis in mouse mesangial cells stimulated with TGF-β

By Maureen Bellinger
September 17, 2022
0
0
  • Nogueira, A., Pires, M. J. & Oliveira, P. A. Pathophysiological mechanisms of renal fibrosis: A review of animal models and therapeutic strategies. In Vivo 31, 1–22. https://doi.org/10.21873/invivo.11019 (2017).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Simonson, M. S. Phenotypic transitions and fibrosis in diabetic nephropathy. Kidney Int. 71, 846–854. https://doi.org/10.1038/sj.ki.5002180 (2007).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Leask, A. & Abraham, D. J. TGF-beta signaling and the fibrotic response. FASEB J. 18, 816–827. https://doi.org/10.1096/fj.03-1273rev (2004).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Padgett, R. W. & Reiss, M. TGFbeta superfamily signaling: Notes from the desert. Development 134, 3565–3569. https://doi.org/10.1242/dev.005926 (2007).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Rahimi, R. A. & Leof, E. B. TGF-beta signaling: A tale of two responses. J. Cell Biochem. 102, 593–608. https://doi.org/10.1002/jcb.21501 (2007).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Derveaux, S., Vandesompele, J. & Hellemans, J. How to do successful gene expression analysis using real-time PCR. Methods 50, 227–230. https://doi.org/10.1016/j.ymeth.2009.11.001 (2010).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Ho-Pun-Cheung, A. et al. Reverse transcription-quantitative polymerase chain reaction: Description of a RIN-based algorithm for accurate data normalization. BMC Mol. Biol. 10, 31. https://doi.org/10.1186/1471-2199-10-31 (2009).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bustin, S. A. et al. The MIQE guidelines: Minimum information for publication of quantitative real-time PCR experiments. Clin. Chem. 55, 611–622. https://doi.org/10.1373/clinchem.2008.112797 (2009).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Schwarzenbach, H., da Silva, A. M., Calin, G. & Pantel, K. Data normalization strategies for MicroRNA quantification. Clin. Chem. 61, 1333–1342. https://doi.org/10.1373/clinchem.2015.239459 (2015).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Muñoz, J. J. et al. Identification of housekeeping genes for microRNA expression analysis in kidney tissues of Pkd1 deficient mouse models. Sci. Rep. 10, 231. https://doi.org/10.1038/s41598-019-57112-4 (2020).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Caracausi, M. et al. Systematic identification of human housekeeping genes possibly useful as references in gene expression studies. Mol. Med. Rep. 16, 2397–2410. https://doi.org/10.3892/mmr.2017.6944 (2017).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Eisenberg, E. & Levanon, E. Y. Human housekeeping genes, revisited. Trends Genet. 29, 569–574. https://doi.org/10.1016/j.tig.2013.05.010 (2013).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Wang, Z., Lyu, Z., Pan, L., Zeng, G. & Randhawa, P. Defining housekeeping genes suitable for RNA-seq analysis of the human allograft kidney biopsy tissue. BMC Med. Genomics 12, 86. https://doi.org/10.1186/s12920-019-0538-z (2019).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jung, M. et al. In search of suitable reference genes for gene expression studies of human renal cell carcinoma by real-time PCR. BMC Mol Biol 8, 47. https://doi.org/10.1186/1471-2199-8-47 (2007).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Huggett, J., Dheda, K., Bustin, S. & Zumla, A. Real-time RT-PCR normalisation; strategies and considerations. Genes Immun. 6, 279–284. https://doi.org/10.1038/sj.gene.6364190 (2005).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Hosni, N. D., Anauate, A. C. & Boim, M. A. Reference genes for mesangial cell and podocyte qPCR gene expression studies under high-glucose and renin-angiotensin-system blocker conditions. PLoS ONE 16, e0246227. https://doi.org/10.1371/journal.pone.0246227 (2021).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Muñoz, J. J. et al. Ppia is the most stable housekeeping gene for qRT-PCR normalization in kidneys of three Pkd1-deficient mouse models. Sci. Rep. 11, 19798. https://doi.org/10.1038/s41598-021-99366-x (2021).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Guan, Q., Nguan, C. Y. & Du, C. Expression of transforming growth factor-beta1 limits renal ischemia-reperfusion injury. Transplantation 89, 1320–1327. https://doi.org/10.1097/TP.0b013e3181d8e9dc (2010).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Morrissey, J. et al. Transforming growth factor-beta induces renal epithelial jagged-1 expression in fibrotic disease. J. Am. Soc. Nephrol. 13, 1499–1508. https://doi.org/10.1097/01.asn.0000017905.77985.4a (2002).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Wu, X. et al. Exosomes from high glucose-treated glomerular endothelial cells trigger the epithelial-mesenchymal transition and dysfunction of podocytes. Sci. Rep. 7, 9371. https://doi.org/10.1038/s41598-017-09907-6 (2017).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cappelli, C. et al. The TGF-β profibrotic cascade targets ecto-5’-nucleotidase gene in proximal tubule epithelial cells and is a traceable marker of progressive diabetic kidney disease. Biochim. Biophys. Acta Mol. Basis Dis. 1866, 165796. https://doi.org/10.1016/j.bbadis.2020.165796 (2020).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Castro, N. E., Kato, M., Park, J. T. & Natarajan, R. Transforming growth factor β1 (TGF-β1) enhances expression of profibrotic genes through a novel signaling cascade and microRNAs in renal mesangial cells. J. Biol. Chem. 289, 29001–29013. https://doi.org/10.1074/jbc.M114.600783 (2014).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Takakura, K., Tahara, A., Sanagi, M., Itoh, H. & Tomura, Y. Antifibrotic effects of pirfenidone in rat proximal tubular epithelial cells. Ren. Fail. 34, 1309–1316. https://doi.org/10.3109/0886022X.2012.718955 (2012).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Deshpande, S. et al. Reduced autophagy by a microRNA-mediated signaling cascade in diabetes-induced renal glomerular hypertrophy. Sci. Rep. 8, 6954. https://doi.org/10.1038/s41598-018-25295-x (2018).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Huang, F. et al. High glucose and TGF-β1 reduce expression of endoplasmic reticulum-resident selenoprotein S and selenoprotein N in human mesangial cells. Ren. Fail. 41, 762–769. https://doi.org/10.1080/0886022X.2019.1641413 (2019).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jia, Y. et al. Dysregulation of histone H3 lysine 27 trimethylation in transforming growth factor-β1-induced gene expression in mesangial cells and diabetic kidney. J. Biol. Chem. 294, 12695–12707. https://doi.org/10.1074/jbc.RA119.007575 (2019).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Masola, V. et al. In vitro effects of interleukin (IL)-1 beta inhibition on the epithelial-to-mesenchymal transition (EMT) of renal tubular and hepatic stellate cells. J. Transl. Med. 17, 12. https://doi.org/10.1186/s12967-019-1770-1 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ma, J. et al. Up-regulation of microRNA-93 inhibits TGF-β1-induced EMT and renal fibrogenesis by down-regulation of Orai1. J. Pharmacol. Sci. 136, 218–227. https://doi.org/10.1016/j.jphs.2017.12.010 (2018).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Suzuki, Y. et al. Transforming growth factor-β induces vascular endothelial growth factor-C expression leading to lymphangiogenesis in rat unilateral ureteral obstruction. Kidney Int. 81, 865–879. https://doi.org/10.1038/ki.2011.464 (2012).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Biederman, J., Yee, J. & Cortes, P. Validation of internal control genes for gene expression analysis in diabetic glomerulosclerosis. Kidney Int. 66, 2308–2314. https://doi.org/10.1111/j.1523-1755.2004.66016.x (2004).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Leong, K. G., Ozols, E., Kanellis, J., Nikolic-Paterson, D. J. & Ma, F. Y. Cyclophilin A promotes inflammation in acute kidney injury but not in renal fibrosis. Int. J. Mol. Sci. https://doi.org/10.3390/ijms21103667 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nigro, P., Pompilio, G. & Capogrossi, M. C. Cyclophilin A: A key player for human disease. Cell Death Dis. 4, e888. https://doi.org/10.1038/cddis.2013.410 (2013).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ramachandran, S. et al. Plasma level of cyclophilin A is increased in patients with type 2 diabetes mellitus and suggests presence of vascular disease. Cardiovasc. Diabetol. 13, 38. https://doi.org/10.1186/1475-2840-13-38 (2014).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nicholls, C., Li, H. & Liu, J. P. GAPDH: A common enzyme with uncommon functions. Clin. Exp. Pharmacol. Physiol. 39, 674–679. https://doi.org/10.1111/j.1440-1681.2011.05599.x (2012).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Seidler, N. W. GAPDH and intermediary metabolism. Adv. Exp. Med. Biol. 985, 37–59. https://doi.org/10.1007/978-94-007-4716-6_2 (2013).

    Article 
    PubMed 

    Google Scholar 

  • Tarze, A. et al. GAPDH, a novel regulator of the pro-apoptotic mitochondrial membrane permeabilization. Oncogene 26, 2606–2620. https://doi.org/10.1038/sj.onc.1210074 (2007).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Meyer, A., Todt, C., Mikkelsen, N. T. & Lieb, B. Fast evolving 18S rRNA sequences from Solenogastres (Mollusca) resist standard PCR amplification and give new insights into mollusk substitution rate heterogeneity. BMC Evol. Biol. 10, 70. https://doi.org/10.1186/1471-2148-10-70 (2010).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Moore, P. B. & Steitz, T. A. The involvement of RNA in ribosome function. Nature 418, 229–235. https://doi.org/10.1038/418229a (2002).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Kang, T. H., Park, Y., Bader, J. S. & Friedmann, T. The housekeeping gene hypoxanthine guanine phosphoribosyltransferase (HPRT) regulates multiple developmental and metabolic pathways of murine embryonic stem cell neuronal differentiation. PLoS ONE 8, e74967. https://doi.org/10.1371/journal.pone.0074967 (2013).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Townsend, M. H., Robison, R. A. & O’Neill, K. L. A review of HPRT and its emerging role in cancer. Med. Oncol. 35, 89. https://doi.org/10.1007/s12032-018-1144-1 (2018).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Bugyi, B. & Kellermayer, M. The discovery of actin: “to see what everyone else has seen, and to think what nobody has thought”. J. Muscle Res. Cell Motil. 41, 3–9. https://doi.org/10.1007/s10974-019-09515-z (2020).

    Article 
    PubMed 

    Google Scholar 

  • Schnaper, H. W., Hayashida, T., Hubchak, S. C. & Poncelet, A. C. TGF-beta signal transduction and mesangial cell fibrogenesis. Am. J. Physiol. Renal. Physiol. 284, F243-252. https://doi.org/10.1152/ajprenal.00300.2002 (2003).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Bjerregaard, H., Pedersen, S., Kristensen, S. R. & Marcussen, N. Reference genes for gene expression analysis by real-time reverse transcription polymerase chain reaction of renal cell carcinoma. Diagn. Mol. Pathol. 20, 212–217. https://doi.org/10.1097/PDM.0b013e318212e0a9 (2011).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Cui, X., Zhou, J., Qiu, J., Johnson, M. R. & Mrug, M. Validation of endogenous internal real-time PCR controls in renal tissues. Am. J. Nephrol. 30, 413–417. https://doi.org/10.1159/000235993 (2009).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schmid, H. et al. Validation of endogenous controls for gene expression analysis in microdissected human renal biopsies. Kidney Int. 64, 356–360. https://doi.org/10.1046/j.1523-1755.2003.00074.x (2003).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Ma, Y., Dai, H., Kong, X. & Wang, L. Impact of thawing on reference gene expression stability in renal cell carcinoma samples. Diagn. Mol. Pathol. 21, 157–163. https://doi.org/10.1097/PDM.0b013e31824d3435 (2012).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Ma, Y. et al. Renal tissue thawed for 30 minutes is still suitable for gene expression analysis. PLoS ONE 9, e93175. https://doi.org/10.1371/journal.pone.0093175 (2014).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zinzow-Kramer, W. M., Horton, B. M. & Maney, D. L. Evaluation of reference genes for quantitative real-time PCR in the brain, pituitary, and gonads of songbirds. Horm. Behav. 66, 267–275. https://doi.org/10.1016/j.yhbeh.2014.04.011 (2014).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Barber, R. D., Harmer, D. W., Coleman, R. A. & Clark, B. J. GAPDH as a housekeeping gene: Analysis of GAPDH mRNA expression in a panel of 72 human tissues. Physiol. Genomics 21, 389–395. https://doi.org/10.1152/physiolgenomics.00025.2005 (2005).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Gholami, K., Loh, S. Y., Salleh, N., Lam, S. K. & Hoe, S. Z. Selection of suitable endogenous reference genes for qPCR in kidney and hypothalamus of rats under testosterone influence. PLoS ONE 12, e0176368. https://doi.org/10.1371/journal.pone.0176368 (2017).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bas, A., Forsberg, G., Hammarström, S. & Hammarström, M. L. Utility of the housekeeping genes 18S rRNA, beta-actin and glyceraldehyde-3-phosphate-dehydrogenase for normalization in real-time quantitative reverse transcriptase-polymerase chain reaction analysis of gene expression in human T lymphocytes. Scand. J. Immunol. 59, 566–573. https://doi.org/10.1111/j.0300-9475.2004.01440.x (2004).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Banda, M., Bommineni, A., Thomas, R. A., Luckinbill, L. S. & Tucker, J. D. Evaluation and validation of housekeeping genes in response to ionizing radiation and chemical exposure for normalizing RNA expression in real-time PCR. Mutat. Res. 649, 126–134. https://doi.org/10.1016/j.mrgentox.2007.08.005 (2008).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Granfar, R. M., Day, C. J., Kim, M. S. & Morrison, N. A. Optimised real-time quantitative PCR assays for RANKL regulated genes. Mol. Cell Probes 19, 119–126. https://doi.org/10.1016/j.mcp.2004.10.003 (2005).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Related posts:

    1. Predicting tissue-specific gene expression from complete blood transcriptome
    2. MRI biomarker to foretell LNM in T3 stage rectal carcinoma
    3. Medical Components Related to Excessive Glycemic Variability Outlined by
    4. Significance of RDW in predicting mortality in COVID‐19—An evaluation of 622 circumstances – Soni – – Worldwide Journal of Laboratory Hematology

    Categories

    • Coefficient of Variation
    • Debt
    • MSCIWI
    • Nasdaq
    • Temporal
    • Terms and Conditions
    • Privacy Policy