SWVRC Fianance, Loans & Debt

Main Menu

  • Home
  • Coefficient of Variation
  • Temporal
  • Nasdaq
  • MSCIWI
  • Debt

SWVRC Fianance, Loans & Debt

Header Banner

SWVRC Fianance, Loans & Debt

  • Home
  • Coefficient of Variation
  • Temporal
  • Nasdaq
  • MSCIWI
  • Debt
Coefficient of Variation
Home›Coefficient of Variation›Deep polygenic neural network for predicting and identifying yield-associated genes in Indonesian rice accessions

Deep polygenic neural network for predicting and identifying yield-associated genes in Indonesian rice accessions

By Maureen Bellinger
August 15, 2022
0
0
  • Lee, S., Lozano, A., Kambadur, P. & Xing, E. P. An efficient nonlinear regression approach for genome-wide detection of marginal and interacting genetic variations. J. Comput. Biol. 23, 372–389 (2016).

    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Banerjee, S., Zeng, L., Schunkert, H. & Söding, J. Bayesian multiple logistic regression for case-control GWAS. PLoS Genet. 14, 1–27 (2018).

    Article 
    CAS 

    Google Scholar 

  • Yoo, Y. J., Sun, L. & Bull, S. B. Gene-based multiple regression association testing for combined examination of common and low frequency variants in quantitative trait analysis. Front. Genet. 4, 1–17 (2013).

    CAS 
    Article 

    Google Scholar 

  • Yoo, Y. J., Sun, L., Poirier, J. G., Paterson, A. D. & Bull, S. B. Multiple linear combination (MLC) regression tests for common variants adapted to linkage disequilibrium structure. Genet. Epidemiol. 41, 108–121 (2017).

    PubMed 
    Article 

    Google Scholar 

  • Li, X. et al. Genetic control of the root system in rice under normal and drought stress conditions by genome-wide association study. PLoS Genet. 13, 1–24 (2017).

    Google Scholar 

  • McMahan, C. et al. A Bayesian hierarchical model for identifying significant polygenic effects while controlling for confounding and repeated measures. Stat. Appl. Genet. Mol. Biol. 16, 407–419 (2017).

    MathSciNet 
    PubMed 
    MATH 
    Article 

    Google Scholar 

  • International Rice Genome Sequencing Project. The map-based sequence of the rice genome. Nature 436, 793–800 (2005).

    Article 
    CAS 

    Google Scholar 

  • Yao, W. et al. Exploring the rice dispensable genome using a metagenome-like assembly strategy. Genome Biol. 16, 1–20 (2015).

    Article 
    CAS 

    Google Scholar 

  • Zhao, H. et al. RiceVarMap: A comprehensive database of rice genomic variations. Nucleic Acids Res. 43, D1018–D1022 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Chen, H. et al. A high-density SNP genotyping array for rice biology and molecular breeding. Mol. Plant 7, 541–553 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Food and Agriculture Organization of the United Nations. FAO’s Director-general on how to feed the world in 2050. Popul. Dev. Rev. 35, 837–839 (2009).

    Article 

    Google Scholar 

  • World Population Review. Megadiverse Countries 2020. https://worldpopulationreview.com/country-rankings/megadiverse-countries (2020).

  • UN DESA. World Population Prospects. https://population.un.org/wpp/Graphs/Probabilistic/POP/TOT/360 (2019).

  • Goff, S. A. et al. A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science (80-). 296, 92–100 (2002).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Yu, J. et al. A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science (80-). 296, 79–92 (2002).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Jiang, C. K. et al. Identification and distribution of a single nucleotide polymorphism responsible for the catechin content in tea plants. Hortic. Res. 7, 1–9 (2020).

    CAS 
    Article 

    Google Scholar 

  • Sapkota, S., Boatwright, J. L., Jordan, K., Boyles, R. & Kresovich, S. Identification of novel genomic associations and gene candidates for grain starch content in sorghum. Genes (Basel). 11, 1–15 (2020).

    Article 
    CAS 

    Google Scholar 

  • Wu, D. et al. Identification of a candidate gene associated with isoflavone content in soybean seeds using genome-wide association and linkage mapping. Plant J. 104, 950–963 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Sun, L. et al. New quantitative trait locus (QTLs) and candidate genes associated with the grape berry color trait identified based on a high-density genetic map. BMC Plant Biol. 20, 1–13 (2020).

    CAS 
    Article 

    Google Scholar 

  • To, H. T. M. et al. A genome-wide association study reveals the quantitative trait locus and candidate genes that regulate phosphate efficiency in a Vietnamese rice collection. Physiol. Mol. Biol. Plants 26, 2267–2281 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Lin, Y. et al. Phenotypic and genetic variation in phosphorus-deficiency-tolerance traits in Chinese wheat landraces. BMC Plant Biol. 20, 1–9 (2020).

    Article 
    CAS 

    Google Scholar 

  • Liu, W. et al. Genome-wide association study reveals the genetic basis of fiber quality traits in upland cotton (Gossypium hirsutum L.). BMC Plant Biol. 20, 1–13 (2020).

    Article 
    CAS 

    Google Scholar 

  • Thabet, S. G., Moursi, Y. S., Karam, M. A., Börner, A. & Alqudah, A. M. Natural variation uncovers candidate genes for barley spikelet number and grain yield under drought stress. Multidiscip. Digit. Publ. Inst. 11, 1–23 (2020).

    Google Scholar 

  • Su, Y., Xu, H. & Yan, L. Support vector machine-based open crop model (SBOCM): Case of rice production in China. Saudi J. Biol. Sci. 24, 537–547 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Basith, S., Manavalan, B., Shin, T. H. & Lee, G. SDM6A: A web-based integrative machine-learning framework for predicting 6mA sites in the rice genome. Mol. Ther. Nucleic Acids 18, 131–141 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Yu, H. & Dai, Z. SNNRice6mA: A deep learning method for predicting DNA N6-methyladenine sites in rice genome. Front. Genet. 10, 1–6 (2019).

    Article 
    CAS 

    Google Scholar 

  • Putri, R. E., Yahya, A., Adam, N. M. & Abd Aziz, S. Rice yield prediction model with respect to crop healthiness and soil fertility. Food Res. 3, 171–176 (2019).

    Article 

    Google Scholar 

  • Supro, I. A., Mahar, J. A. & Mahar, S. A. Rice yield prediction and optimization using association rules and neural network methods to enhance agribusiness. Indian J. Sci. Technol. 13, 1367–1379 (2020).

    Article 

    Google Scholar 

  • Maeda, Y., Goyodani, T., Nishiuchi, S. & Kita, E. Yield prediction of paddy rice with machine learning. In Proc. 2018 Int. Conf. Parallel Distrib. Process. Tech. Appl. 361–365 (2018).

  • Das, B., Nair, B., Reddy, V. K. & Venkatesh, P. Evaluation of multiple linear, neural network and penalised regression models for prediction of rice yield based on weather parameters for west coast of India. Int. J. Biometeorol. 62, 1809–1822 (2018).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • Amaratunga, V. et al. Artificial neural network to estimate the paddy yield prediction using climatic data. Math. Probl. Eng. 2020, (2020).

  • Chu, Z. & Yu, J. An end-to-end model for rice yield prediction using deep learning fusion. Comput. Electron. Agric. 174, 105471 (2020).

    Article 

    Google Scholar 

  • Armagan, A., Dunson, D. B. & Lee, J. Generalized double pareto shrinkage. Stat. Sin. 23, 119–143 (2013).

    MathSciNet 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • van Erp, S., Oberski, D. L. & Mulder, J. Shrinkage priors for Bayesian penalized regression. J. Math. Psychol. 89, 31–50 (2019).

    MathSciNet 
    MATH 
    Article 

    Google Scholar 

  • Huang, S., Shingaki-Wells, R. N., Taylor, N. L. & Millar, A. H. The rice mitochondria proteome and its response during development and to the environment. Front. Plant Sci. 4, 1–6 (2013).

    Article 

    Google Scholar 

  • Teixeira, P. F. & Glaser, E. Processing peptidases in mitochondria and chloroplasts. Biochim. Biophys. Acta Mol. Cell Res. 1833, 360–370 (2013).

    CAS 
    Article 

    Google Scholar 

  • Sharma, M. & Pandey, G. K. Expansion and function of repeat domain proteins during stress and development in plants. Front. Plant Sci. 6, 1–15 (2016).

    Google Scholar 

  • Sheikh, A. H. et al. Interaction between two rice mitogen activated protein kinases and its possible role in plant defense. BMC Plant Biol. 13, 1–11 (2013).

    Article 
    CAS 

    Google Scholar 

  • Yang, Z. et al. Transcriptome-based analysis of mitogen-activated protein kinase cascades in the rice response to Xanthomonas oryzae infection. Rice 8, 1–13 (2015).

    Article 

    Google Scholar 

  • Vaswani, A. et al. Attention is all you need. Adv. Neural Inf. Process. Syst. 30, 5999–6009 (2017).

    Google Scholar 

  • Cheng, H. T. et al. Wide & deep learning for recommender systems. In ACM Int. Conf. Proceeding Ser. 7–10 (2016) https://doi.org/10.1145/2988450.2988454.

  • Bahdanau, D., Cho, K. H. & Bengio, Y. Neural machine translation by jointly learning to align and translate. In 3rd Int. Conf. Learn. Represent. ICLR 2015—Conf. Track Proc. 1–15 (2015).

  • Baurley, J. W., Budiarto, A., Kacamarga, M. F. & Pardamean, B. A web portal for rice crop improvements. Int. J. Web Portals 10, 15–31 (2018).

    Article 

    Google Scholar 

  • Wang, D. R. et al. An imputation platform to enhance integration of rice genetic resources. Nat. Commun. 9, 1–10 (2018).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • Dominic, N., Prayoga, J. S., Kumala, D., Surantha, N. & Soewito, B. The comparative study of algorithms in building the green mobile cloud computing environment. Springer B. Lect. Notes Netw. Syst. 343, 43–54 (2021).

    Article 

    Google Scholar 

  • Mittag, F., Römer, M. & Zell, A. Influence of feature encoding and choice of classifier on disease risk prediction in genome-wide association studies. PLoS One 10, e0135832 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Song, M., Wheeler, W., Caporaso, N. E., Landi, M. T. & Chatterjee, N. Using imputed genotype data in the joint score tests for genetic association and gene–environment interactions in case-control studies. Genet. Epidemiol. 42, 146–155 (2018).

    PubMed 
    Article 

    Google Scholar 

  • Yusuf, I. et al. Genetic risk factors for colorectal cancer in multiethnic Indonesians. Sci. Rep. 11, 1–9 (2021).

    MathSciNet 
    Article 
    CAS 

    Google Scholar 

  • Probst, P., Boulesteix, A. L. & Bischl, B. Tunability: Importance of hyperparameters of machine learning algorithms. J. Mach. Learn. Res. 20, 1–32 (2019).

    MathSciNet 
    MATH 

    Google Scholar 

  • Dominic, N., Daniel Cenggoro, T. W., Budiarto, A. & Pardamean, B. Transfer learning using inception-resnet-v2 model to the augmented neuroimages data for autism spectrum disorder classification. Commun. Math. Biol. Neurosci. 2021, 1–21 (2021).

    Google Scholar 

  • Lattes, M. B. Report: Regularization and variable selection via the elastic net. J. R. Stat. Soc. Ser. B Stat. Methodol. 67, 301–320 (2005).

    MathSciNet 
    Article 

    Google Scholar 

  • Friedman, J., Hastie, T. & Tibshirani, R. Regularization paths for generalized linear models via coordinate descent. J. Stat. Softw. 33, 1–22 (2010).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Zou, H. & Hastie, T. Regularization and variable selection via the elastic net. J. R. Stat. Soc. Ser. B Stat. Methodol. 67, 301–320 (2005).

    MathSciNet 
    MATH 
    Article 

    Google Scholar 

  • Shannon, C. E. A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948).

    MathSciNet 
    MATH 
    Article 

    Google Scholar 

  • Shannon, C. E. A mathematical theory of communication part III: Mathematical preliminaries. Bell Syst. Tech. J. 27, 623–656 (1948).

    MATH 
    Article 

    Google Scholar 

  • Croiseau, P. et al. Fine tuning genomic evaluations in dairy cattle through SNP pre-selection with the Elastic-Net algorithm. Genet. Res. (Camb) 93, 409–417 (2011).

    CAS 
    Article 

    Google Scholar 

  • Sarkar, R. K., Rao, A. R., Meher, P. K., Nepolean, T. & Mohaparta, T. Evaluation of random forest regression for prediction of breeding value from genomewide SNPs. J. Genet. 94, 187–192 (2015).

    PubMed 
    Article 

    Google Scholar 

  • Rashkin, S. R. et al. A pharmacogenetic prediction model of progression-free survival in breast cancer using genome-wide genotyping data from CALGB 40502 (Alliance). Clin. Pharmacol. Ther. 105, 738–745 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Wen, J., Ford, C. T., Janies, D. & Shi, X. A parallelized strategy for epistasis analysis based on Empirical Bayesian Elastic Net models. Bioinformatics 36, 3803–3810 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Chen, C., Twycross, J. & Garibaldi, J. M. A new accuracy measure based on bounded relative error for time series forecasting. PLoS One 12, 1–23 (2017).

    Google Scholar 

  • Elavarasan, D., Vincent, D. R., Sharma, V., Zomaya, A. Y. & Srinivasan, K. Forecasting yield by integrating agrarian factors and machine learning models: A survey. Comput. Electron. Agric. 155, 257–282 (2018).

    Article 

    Google Scholar 

  • Spiess, A. N. & Neumeyer, N. An evaluation of R2 as an inadequate measure for nonlinear models in pharmacological and biochemical research: A Monte Carlo approach. BMC Pharmacol. 10, 1–11 (2010).

    Article 

    Google Scholar 

  • Pal, R. Chapter 4: Validation methodologies. Predict. Model. Drug Sensit. https://doi.org/10.1016/b978-0-12-805274-7.00004-x (2017).

    Article 

    Google Scholar 

  • Nallamilli, B. R. R. et al. Polycomb group gene OsFIE2 regulates rice (Oryza sativa) seed development and grain filling via a mechanism distinct from Arabidopsis. PLoS Genet. 9, e1003322 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Jeong, K. et al. Phosphorus remobilization from rice flag leaves during grain filling: an RNA-seq study. Plant Biotechnol. J. 15, 15–26 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Zhu, Q.-L. et al. In silico analysis of a MRP transporter gene reveals its possible role in anthocyanins or flavonoids transport in Oryze sativa. Am. J. Plant Sci. 04, 555–560 (2013).

    Article 
    CAS 

    Google Scholar 

  • Liu, Y. et al. Anthocyanin biosynthesis and degradation mechanisms in Solanaceous vegetables: A review. Front. Chem. 6, 52 (2018).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Panche, A. N., Diwan, A. D. & Chandra, S. R. Flavonoids: An overview. J. Nutr. Sci. 5, (2016).

  • Singh, V., Sharma, V. & Katara, P. Comparative transcriptomics of rice and exploitation of target genes for blast infection. Agric. Gene 1, 143–150 (2016).

    Article 

    Google Scholar 

  • van Ooijen, G. et al. Structure-function analysis of the NB-ARC domain of plant disease resistance proteins. J. Exp. Bot. 59, 1383–1397 (2008).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Głowacki, S., Macioszek, V. K. & Kononowicz, A. K. R proteins as fundamentals of plant innate immunity. Cell. Mol. Biol. Lett. 16, 1–24 (2011).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Tian, L. et al. Rna-binding protein RBP-P is required for glutelin and prolamine mRNA localization in rice endosperm cells. Plant Cell 30, 2529–2552 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Wang, C. et al. Chloroplastic Os3BGlu6 contributes significantly to cellular ABA pools and impacts drought tolerance and photosynthesis in rice. New Phytol. 226, 1042–1054 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Sun, L. et al. Carbon Starved Anther modulates sugar and ABA metabolism to protect rice seed germination and seedling fitness. Plant Physiol. https://doi.org/10.1093/plphys/kiab391 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Talla, S. K. et al. Cytokinin delays dark-induced senescence in rice by maintaining the chlorophyll cycle and photosynthetic complexes. J. Exp. Bot. 67, 1839–1851 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Chandran, A. K. N., Jeong, H. Y., Jung, K. H. & Lee, C. Development of functional modules based on co-expression patterns for cell-wall biosynthesis related genes in rice. J. Plant Biol. 59, 1–15 (2016).

    CAS 
    Article 

    Google Scholar 

  • Wang, Y. et al. Genetic bases of source-, sink-, and yield-related traits revealed by genome-wide association study in Xian rice. Crop J. 8, 119–131 (2020).

    ADS 
    Article 

    Google Scholar 

  • Patishtan, J., Hartley, T. N., Fonseca de Carvalho, R. & Maathuis, F. J. M. Genome-wide association studies to identify rice salt-tolerance markers. Plant Cell Environ. 41, 970–982 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Saha, J., Sengupta, A., Gupta, K. & Gupta, B. Molecular phylogenetic study and expression analysis of ATP-binding cassette transporter gene family in Oryza sativa in response to salt stress. Comput. Biol. Chem. 54, 18–32 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Leonard, G. D., Fojo, T. & Bates, S. E. The role of ABC transporters in clinical practice. Oncologist 8, 411–424 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Mackon, E. et al. Recent insights into anthocyanin pigmentation, synthesis, trafficking, and regulatory mechanisms in rice (Oryza sativa L.) caryopsis. Biomolecules 11, 1–26 (2021).

    Article 
    CAS 

    Google Scholar 

  • Nguyen, Q.-T.T., Huang, T.-L. & Huang, H.-J. Identification of genes related to arsenic detoxification in rice roots using microarray analysis. Int. J. Biosci. Biochem. Bioinform. 4, 22–27 (2014).

    CAS 

    Google Scholar 

  • Narsai, R. et al. Mechanisms of growth and patterns of gene expression in oxygen-deprived rice coleoptiles. Plant J. 82, 25–40 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Wu, Y. S. & Yang, C. Y. Comprehensive transcriptomic analysis of auxin responses in submerged rice coleoptile growth. Int. J. Mol. Sci. 21, 1292 (2020).

    CAS 
    PubMed Central 
    Article 

    Google Scholar 

  • Chen, X. et al. Transcriptome and proteome profiling of different colored rice reveals physiological dynamics involved in the flavonoid pathway. Int. J. Mol. Sci. 20, 2463 (2019).

    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Kim, C. K. et al. Multi-layered screening method identification of flavonoid-specific genes, using transgenic rice. Biotechnol. Biotechnol. Equip. 27, 3944–3951 (2013).

    CAS 
    Article 

    Google Scholar 

  • Koes, R. E., Quattrocchio, F. & Mol, J. N. M. The flavonoid biosynthetic pathway in plants: Function and evolution. BioEssays 16, 123–132 (1993).

    Article 

    Google Scholar 

  • Davies, K. M. et al. The evolution of flavonoid biosynthesis: A bryophyte perspective. Front. Plant Sci. 11, 1–21 (2020).

    Article 

    Google Scholar 

  • Related posts:

    1. Predicting tissue-specific gene expression from complete blood transcriptome
    2. MRI biomarker to foretell LNM in T3 stage rectal carcinoma
    3. Medical Components Related to Excessive Glycemic Variability Outlined by
    4. Significance of RDW in predicting mortality in COVID‐19—An evaluation of 622 circumstances – Soni – – Worldwide Journal of Laboratory Hematology

    Categories

    • Coefficient of Variation
    • Debt
    • MSCIWI
    • Nasdaq
    • Temporal
    • Terms and Conditions
    • Privacy Policy