SWVRC Fianance, Loans & Debt

Main Menu

  • Home
  • Coefficient of Variation
  • Temporal
  • Nasdaq
  • MSCIWI
  • Debt

SWVRC Fianance, Loans & Debt

Header Banner

SWVRC Fianance, Loans & Debt

  • Home
  • Coefficient of Variation
  • Temporal
  • Nasdaq
  • MSCIWI
  • Debt
Coefficient of Variation
Home›Coefficient of Variation›Cu and Ni Co-sputtered heteroatomic thin film for enhanced nonenzymatic glucose detection

Cu and Ni Co-sputtered heteroatomic thin film for enhanced nonenzymatic glucose detection

By Maureen Bellinger
May 7, 2022
0
0
  • Bruen, D., Delaney, C., Florea, L. & Diamond, D. Glucose sensing for diabetes monitoring: Recent developments. Sensors 17, 1866 (2017).

    ADS 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Ghazaryan, A., Ovsepian, S. V. & Ntziachristos, V. Extended near-infrared optoacoustic spectrometry for sensing physiological concentrations of glucose. Front. Endocrinol. 9, 112 (2018).

    Article 

    Google Scholar 

  • Gao, D. et al. Surface-Enhanced Raman Spectroscopy Detection of Cerebrospinal Fluid Glucose Based on the Optofluidic In-Fiber-Integrated Composites of Graphene Oxide, Silver Nanoparticles, and 4-Mercaptophenylboronic Acid. ACS Appl. Nano Mater. 4, 10784–10790 (2021).

    CAS 
    Article 

    Google Scholar 

  • Cui, X. et al. Detection of glucose in diabetic tears by using gold nanoparticles and MXene composite surface-enhanced Raman scattering substrates. Spectrochim. Acta A. 266, 120432 (2022).

    CAS 
    Article 

    Google Scholar 

  • Qu, Z. et al. Boronic acid functionalized graphene quantum dots as a fluorescent probe for selective and sensitive glucose determination in microdialysate. Chem. Commun. 49, 9830 (2013).

    CAS 
    Article 

    Google Scholar 

  • Kumar, R. & Chauhan, S. Nano/micro-scaled materials based optical biosensing of glucose. Ceram. Int. https://doi.org/10.1016/j.ceramint.2021.10.170 (2021).

    Article 

    Google Scholar 

  • Demirel Topel, S. & Beyaz, M. İ. Fluorescence quenching-based bodipy-boronic acid linked viologen dual system for potential glucose sensing applications. Sens. Rev. 42, 62–69 (2021).

    Article 

    Google Scholar 

  • Sun, Y. et al. In situ growth of TiO2 nanowires on Ti3C2 MXenes nanosheets as highly sensitive luminol electrochemiluminescent nanoplatform for glucose detection in fruits, sweat and serum samples. Biosens. Bioelectron. 194, 113600 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Amirzehni, M., Eskandari, H., Vahid, B. & Hassanzadeh, J. An efficient chemiluminescence system based on mimic CuMOF/Co3O4 nanoparticles composite for the measurement of glucose and cholesterol. Sens. Actuators B Chem. 348, 130690 (2021).

    CAS 
    Article 

    Google Scholar 

  • Yao, W., Zhang, X. & Lin, Z. A sensitive biosensor for glucose determination based on the unique catalytic chemiluminescence of sodium molybdate. Spectrochim. Acta A 265, 120401 (2022).

    CAS 
    Article 

    Google Scholar 

  • Kajisa, T. & Hosoyamada, S. Mesoporous silica-based metal oxide electrode for a nonenzymatic glucose sensor at a physiological pH. Langmuir https://doi.org/10.1021/acs.langmuir.1c01740 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Li, J. et al. In-situ synthesis of Cu/Cu2+1O/carbon spheres for the electrochemical sensing of glucose in serum. Chin. J. Anal. Chem. https://doi.org/10.1016/j.cjac.2021.11.002 (2021).

    Article 

    Google Scholar 

  • Wu, H., Zheng, W., Jiang, Y., Xu, J. & Qiu, F. Construction of a selective non-enzymatic electrochemical sensor based on hollow nickel nanospheres/carbon dots–chitosan and molecularly imprinted polymer film for the detection of glucose. New J. Chem. https://doi.org/10.1039/D1NJ03864H (2021).

    Article 

    Google Scholar 

  • Goodnight, L., Butler, D., Xia, T. & Ebrahimi, A. Non-enzymatic detection of glucose in neutral solution using PBS-treated electrodeposited copper-nickel electrodes. Biosensors 11, 409 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Turner, A. P. F. Biosensors: Sense and sensibility. Chem. Soc. Rev. 42, 3184 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Wang, J. Electrochemical glucose biosensors. Chem. Rev. 108, 814–825 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Oliver, N. S., Toumazou, C., Cass, A. E. G. & Johnston, D. G. Glucose sensors: A review of current and emerging technology. Diabet. Med. 26, 197–210 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Zhang, M. et al. Highly sensitive glucose sensors based on enzyme-modified whole-graphene solution-gated transistors. Sci. Rep. 5, 8311 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Shao, Y. et al. Graphene based electrochemical sensors and biosensors: A review. Electroanalysis 22, 1027–1036 (2010).

    CAS 
    Article 

    Google Scholar 

  • Heller, A. & Feldman, B. Electrochemical glucose sensors and their applications in diabetes management. Chem. Rev. 108, 2482–2505 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Tang, J. et al. Sensitive enzymatic glucose detection by TiO2 nanowire photoelectrochemical biosensors. J. Mater. Chem. A 2, 6153–6157 (2014).

    CAS 
    Article 

    Google Scholar 

  • Gao, Z.-D., Qu, Y., Li, T., Shrestha, N. K. & Song, Y.-Y. Development of amperometric glucose biosensor based on prussian blue functionlized TiO2 nanotube arrays. Sci. Rep. 4, 6891 (2015).

    Article 
    CAS 

    Google Scholar 

  • Wang, H.-C. & Lee, A.-R. Recent developments in blood glucose sensors. J. Food Drug Anal. 23, 191–200 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Mani, S. et al. Hydrothermal synthesis of NiWO4 crystals for high performance non-enzymatic glucose biosensors. Sci. Rep. 6, 24128 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Sivakumar, M. et al. Low-temperature chemical synthesis of CoWO4 nanospheres for sensitive nonenzymatic glucose sensor. J. Phys. Chem. C 120, 17024–17028 (2016).

    CAS 
    Article 

    Google Scholar 

  • Liyanage, T., Qamar, A. Z. & Slaughter, G. Application of nanomaterials for chemical and biological sensors: A review. IEEE Sens. J. 21, 12407–12425 (2021).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Slaughter, G. Fabrication of nanoindented electrodes for glucose detection. J. Diabetes Sci. Technol. 4, 320–327 (2010).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Tee, S. Y., Teng, C. P. & Ye, E. Metal nanostructures for non-enzymatic glucose sensing. Mater. Sci. Eng. C 70, 1018–1030 (2017).

    CAS 
    Article 

    Google Scholar 

  • Hossain, M. F. & Slaughter, G. PtNPs decorated chemically derived graphene and carbon nanotubes for sensitive and selective glucose biosensing. J. Electroanal. Chem. 861, 113990 (2020).

    CAS 
    Article 

    Google Scholar 

  • Slaughter, G. & Sunday, J. Fabrication of enzymatic glucose hydrogel biosensor based on hydrothermally grown ZnO nanoclusters. IEEE Sens. J. 14, 1573–1576 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Niu, X. et al. Recent advances in non-enzymatic electrochemical glucose sensors based on non-precious transition metal materials: Opportunities and challenges. RSC Adv. 6, 84893–84905 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Gao, X. et al. Core-shell gold-nickel nanostructures as highly selective and stable nonenzymatic glucose sensor for fermentation process. Sci. Rep. 10, 1365 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Li, R., Deng, X. & Xia, L. Non-enzymatic sensor for determination of glucose based on PtNi nanoparticles decorated graphene. Sci. Rep. 10, 16788 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Şavk, A. et al. Highly monodisperse Pd-Ni nanoparticles supported on rGO as a rapid, sensitive, reusable and selective enzyme-free glucose sensor. Sci. Rep. 9, 19228 (2019).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Kumar, B. et al. Reduced SnO2 porous nanowires with a high density of grain boundaries as catalysts for efficient electrochemical CO2-into-HCOOH conversion. Angew. Chem. Int. Ed. 56, 3645–3649 (2017).

    CAS 
    Article 

    Google Scholar 

  • Khedekar, V. V. & Bhanage, B. M. Simple electrochemical synthesis of cuprous oxide nanoparticles and their application as a non-enzymatic glucose sensor. J. Electrochem. Soc. 163, B248–B251 (2016).

    CAS 
    Article 

    Google Scholar 

  • Wei, H. et al. Dendritic core-shell copper-nickel alloy@metal oxide for efficient non-enzymatic glucose detection. Sens. Actuators B Chem. 337, 129687 (2021).

    CAS 
    Article 

    Google Scholar 

  • Ammara, S., Shamaila, S., Zafar, N., Bokhari, A. & Sabah, A. Nonenzymatic glucose sensor with high performance electrodeposited nickel/copper/carbon nanotubes nanocomposite electrode. J. Phys. Chem. Solids 120, 12–19 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Mani, V., Devadas, B. & Chen, S.-M. Direct electrochemistry of glucose oxidase at electrochemically reduced graphene oxide-multiwalled carbon nanotubes hybrid material modified electrode for glucose biosensor. Biosens. Bioelectron. 41, 309–315 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Dong, C. et al. Three-dimensional Cu foam-supported single crystalline mesoporous Cu2O nanothorn arrays for ultra-highly sensitive and efficient nonenzymatic detection of glucose. ACS Appl. Mater. Interfaces 7, 20215–20223 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Yadav, H. M. & Lee, J.-J. One-pot synthesis of copper nanoparticles on glass: Applications for non-enzymatic glucose detection and catalytic reduction of 4-nitrophenol. J. Solid State Electrochem. 23, 503–512 (2019).

    CAS 
    Article 

    Google Scholar 

  • Luo, J., Zhang, H., Jiang, S., Jiang, J. & Liu, X. Facile one-step electrochemical fabrication of a non-enzymatic glucose-selective glassy carbon electrode modified with copper nanoparticles and graphene. Microchim. Acta 177, 485–490 (2012).

    CAS 
    Article 

    Google Scholar 

  • Karikalan, N., Karthik, R., Chen, S.-M., Karuppiah, C. & Elangovan, A. Sonochemical synthesis of sulfur doped reduced graphene oxide supported CuS nanoparticles for the non-enzymatic glucose sensor applications. Sci. Rep. 7, 2494 (2017).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Wang, X. et al. Synthesis of CuO nanostructures and their application for nonenzymatic glucose sensing. Sens. Actuators B Chem. 144, 220–225 (2010).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Reitz, E., Jia, W., Gentile, M., Wang, Y. & Lei, Y. CuO nanospheres based nonenzymatic glucose sensor. Electroanalysis 20, 2482–2486 (2008).

    CAS 
    Article 

    Google Scholar 

  • Kang, X., Mai, Z., Zou, X., Cai, P. & Mo, J. A sensitive nonenzymatic glucose sensor in alkaline media with a copper nanocluster/multiwall carbon nanotube-modified glassy carbon electrode. Anal. Biochem. 363, 143–150 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Zhou, X. et al. Facile synthesis of nanospindle-like Cu2O/straight multi-walled carbon nanotube hybrid nanostructures and their application in enzyme-free glucose sensing. Sens. Actuators B Chem. 168, 1–7 (2012).

    CAS 
    Article 

    Google Scholar 

  • Jeevanandham, G., Vediappan, K., Alothman, Z. A., Altalhi, T. & Sundramoorthy, A. K. Fabrication of 2D-MoSe2 incorporated NiO Nanorods modified electrode for selective detection of glucose in serum samples. Sci. Rep. 11, 13266 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Zhang, X. et al. Nonenzymatic glucose sensor based on in situ reduction of Ni/NiO-graphene nanocomposite. Sensors 16, 1791 (2016).

    ADS 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Liu, J. et al. An AgNP-deposited commercial electrochemistry test strip as a platform for urea detection. Sci. Rep. 10, 9527 (2020).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Lin, K.-C., Lin, Y.-C. & Chen, S.-M. A highly sensitive nonenzymatic glucose sensor based on multi-walled carbon nanotubes decorated with nickel and copper nanoparticles. Electrochim. Acta 96, 164–172 (2013).

    CAS 
    Article 

    Google Scholar 

  • Related posts:

    1. Predicting tissue-specific gene expression from complete blood transcriptome
    2. MRI biomarker to foretell LNM in T3 stage rectal carcinoma
    3. Medical Components Related to Excessive Glycemic Variability Outlined by
    4. Significance of RDW in predicting mortality in COVID‐19—An evaluation of 622 circumstances – Soni – – Worldwide Journal of Laboratory Hematology

    Categories

    • Coefficient of Variation
    • Debt
    • MSCIWI
    • Nasdaq
    • Temporal
    • Terms and Conditions
    • Privacy Policy