Clinical significance of matrix metalloproteinase-9 in Fragile X Syndrome

Auerbach, B. D., Osterweil, E. K. & Bear, M. F. Mutations causing syndromic autism define an axis of synaptic pathophysiology. Nature 480, 63–68 (2011).
Google Scholar
Martin, J. P. & Bell, J. A pedigree of mental defect showing sex-linkage. J. Neurol. Neurosurg. Psychiatry 6, 154–157 (1943).
Google Scholar
Mulligan, L. M. et al. Genetic mapping of DNA segments relative to the locus for the fragile-X Syndrome at Xq27.3. Am. J. Hum. Genet. 37, 463–472 (1985).
Google Scholar
Quartier, A. et al. Intragenic FMR1 disease-causing variants: A significant mutational mechanism leading to Fragile-X Syndrome. Eur. J. Hum. Genet. 25, 423–431 (2017).
Google Scholar
Verkerk, A. J. et al. Identification of a gene (FMR-1) containing a CGG repeat coincident with a breakpoint cluster region exhibiting length variation in Fragile X Syndrome. Cell 65, 905–914 (1991).
Google Scholar
Bassell, G. J. & Warren, S. T. Fragile X Syndrome: Loss of local mRNA regulation alters synaptic development and function. Neuron 60, 201–214 (2008).
Google Scholar
Khandjian, E. W. et al. Biochemical evidence for the association of Fragile X mental retardation protein with brain polyribosomal ribonucleoparticles. PNAS 101, 13357–13362 (2004).
Google Scholar
Brown, V. et al. Microarray identification of FMRP-associated brain mRNAs and altered mRNA translational profiles in Fragile X Syndrome. Cell 107, 477–487 (2001).
Google Scholar
Darnell, J. C. & Klann, E. The translation of translational control by FMRP: Therapeutic targets for Fragile X Syndrome. Nat. Neurosci. 16, 1530–1536 (2013).
Google Scholar
Booker, S. A. et al. Altered dendritic spine function and integration in a mouse model of Fragile X Syndrome. Nat. Commun. 10, 4813 (2019).
Google Scholar
Irwin, S. A. et al. Abnormal dendritic spine characteristics in the temporal and visual cortices of patients with Fragile-X Syndrome: A quantitative examination. Am. J. Med. Genet. 98, 161–167 (2001).
Google Scholar
Irwin, S. A., Galvez, R. & Greenough, W. T. Dendritic spine structural anomalies in Fragile-X mental retardation Syndrome. Cereb. Cortex 10, 1038–1044 (2000).
Google Scholar
Reinhard, S. M., Razak, K. & Ethell, I. M. A delicate balance: Role of MMP-9 in brain development and pathophysiology of neurodevelopmental disorders. Front. Cell. Neurosci. 9, 280 (2015).
Google Scholar
Sidhu, H., Dansie, L. E., Hickmott, P. W., Ethell, D. W. & Ethell, I. M. Genetic removal of matrix metalloproteinase 9 rescues the symptoms of Fragile X Syndrome in a mouse model. J. Neurosci. 34, 9867–9879 (2014).
Google Scholar
Bilousova, T. V. et al. Minocycline promotes dendritic spine maturation and improves behavioural performance in the Fragile X mouse model. J. Med. Genet. 46, 94–102 (2009).
Google Scholar
Dziembowska, M. et al. High MMP-9 activity levels in Fragile X Syndrome are lowered by minocycline. Am. J. Med. Genet. A 161, 1897–1903 (2013).
Google Scholar
Siller, S. S. & Broadie, K. Matrix metalloproteinases and minocycline: Therapeutic avenues for Fragile X Syndrome. Neural Plast. 2012, e124548 (2012).
Google Scholar
Paribello, C. et al. Open-label add-on treatment trial of minocycline in Fragile X Syndrome. BMC Neurol 10, 91 (2010).
Google Scholar
Bar-Or, A. et al. Analyses of all matrix metalloproteinase members in leukocytes emphasize monocytes as major inflammatory mediators in multiple sclerosis. Brain 126, 2738–2749 (2003).
Google Scholar
Sternlicht, M. D. & Werb, Z. How matrix metalloproteinases regulate cell behavior. Annu. Rev. Cell Dev. Biol. 17, 463–516 (2001).
Google Scholar
Frankowski, H., Gu, Y.-H., Heo, J. H., Milner, R. & del Zoppo, G. J. Use of gel zymography to examine matrix metalloproteinase (Gelatinase) expression in brain tissue or in primary glial cultures. Methods Mol. Biol. 814, 221–233 (2012).
Google Scholar
Gkogkas, C. G. et al. Pharmacogenetic inhibition of eIF4E-dependent Mmp9 mRNA translation reverses Fragile X Syndrome-like phenotypes. Cell Rep. 9, 1742–1755 (2014).
Google Scholar
Janusz, A. et al. The Fragile X mental retardation protein regulates matrix metalloproteinase 9 mRNA at synapses. J. Neurosci. 33, 18234–18241 (2013).
Google Scholar
Leigh, M. J. S. et al. A randomized double-blind, placebo-controlled trial of minocycline in children and adolescents with Fragile X Syndrome. J. Dev. Behav. Pediatr. 34, 147–155 (2013).
Google Scholar
Andrea, S. et al. Electrocortical changes associated with minocycline treatment in Fragile X Syndrome. J. Psychopharmacol. 27, 956–963 (2013).
Google Scholar
Çaku, A. et al. New insights of altered lipid profile in Fragile X Syndrome. PLoS ONE 12, e0174301 (2017).
Google Scholar
Lessard, M., Chouiali, A., Drouin, R., Sébire, G. & Corbin, F. Quantitative measurement of FMRP in blood platelets as a new screening test for Fragile X Syndrome. Clin. Genet. 82, 472–477 (2012).
Google Scholar
Snoek-van Beurden, P. A. M. & Von den Hoff, J. W. Zymographic techniques for the analysis of matrix metalloproteinases and their inhibitors. Biotechniques 38, 73–83 (2005).
Google Scholar
Rueden, C. T. et al. Image J2: ImageJ for the next generation of scientific image data. BMC Bioinf. 18, 529 (2017).
Google Scholar
Aman, M. G., Singh, N. N., Stewart, A. W. & Field, C. J. The aberrant behavior checklist: A behavior rating scale for the assessment of treatment effects. Am. J. Ment. Defic. 89, 485–491 (1985).
Google Scholar
Sansone, S. M. et al. Psychometric study of the aberrant behavior checklist in Fragile X Syndrome and implications for targeted treatment. J. Autism. Dev. Disord. 42, 1377–1392 (2012).
Google Scholar
Oakland, T. & Harrison, P. L. Adaptive Behavior Assessment System-II: Clinical Use and Interpretation (Academic Press, Cambridge, 2011).
Kidd, S. A. et al. Improving the diagnosis of autism spectrum disorder in Fragile X Syndrome by adapting the social communication questionnaire and the social responsiveness scale-2. J. Autism. Dev. Disord. 50, 3276–3295 (2020).
Google Scholar
Cordeiro, L., Ballinger, E., Hagerman, R. & Hessl, D. Clinical assessment of DSM-IV anxiety disorders in Fragile X Syndrome: Prevalence and characterization. J. Neurodevelop. Disord. 3, 57–67 (2011).
Google Scholar
Bonnema, D. et al. Effects of age on plasma matrix metalloproteinases (MMPs) and tissue inhibitor of metalloproteinases (TIMPs). J. Cardiac. Fail. 13, 530–540 (2007).
Google Scholar
Samnegård, A. et al. Gender specific associations between matrix metalloproteinases and inflammatory markers in post myocardial infarction patients. Atherosclerosis 202, 550–556 (2009).
Google Scholar
Boumiza, S. et al. MMPs and TIMPs levels are correlated with anthropometric parameters, blood pressure, and endothelial function in obesity. Sci. Rep. 11, 20052 (2021).
Google Scholar
Prescimone, T. et al. Reappraisal of quantitative gel zymography for matrix metalloproteinases. J. Clin. Lab. Anal. 28, 374–380 (2014).
Google Scholar
Heo, D. S., Choi, H., Yeom, M. Y., Song, B. J. & Oh, S. J. Serum levels of matrix metalloproteinase-9 predict lymph node metastasis in breast cancer patients. Oncol. Rep. 31, 1567–1572 (2014).
Google Scholar
Westgard, J. O. & Hunt, M. R. Use and interpretation of common statistical tests in method-comparison studies. Clin. Chem. 19, 49–57 (1973).
Google Scholar
EP09-A2 Method Comparison and Bias Estimation Using Patient Samples; Approved Guideline—Second Edition. 22, 75 (2002).
Westgard, J. O. Use and Interpretation of common statistical tests in method comparison studies. Clin. Chem. 54, 612 (2008).
Google Scholar
Elahirad, S. et al. Association of matrix metalloproteinase-2 (MMP-2) and MMP-9 promoter polymorphisms, their serum levels, and activities with coronary artery calcification (CAC) in an Iranian population. Cardiovasc. Toxicol. 22, 118–129 (2022).
Google Scholar
Verma, A. et al. Association of MMP-2 and MMP-9 with clinical outcome of neurocysticercosis. Parasitology 138, 1423–1428 (2011).
Google Scholar
Chang, Y.-H. et al. Elevated circulatory MMP-2 and MMP-9 levels and activities in patients with rheumatoid arthritis and systemic lupus erythematosus. Clin. Biochem. 41, 955–959 (2008).
Google Scholar
Shiau, M.-Y. et al. Increased circulatory MMP-2 and MMP-9 levels and activities in patients with type 1 diabetes mellitus. Mt. Sinai J. Med. 73, 1024–1028 (2006).
Google Scholar
Cancemi, P. et al. The role of matrix metalloproteinases (MMP-2 and MMP-9) in ageing and longevity: Focus on sicilian long-living individuals (LLIs). Mediat. Inflamm. 2020, e8635158 (2020).
Google Scholar
Gu, C. et al. Sex-related differences in serum matrix metalloproteinase-9 screening non-calcified and mixed coronary atherosclerotic plaques in outpatients with chest pain. Heart Vessels 32, 1424–1431 (2017).
Google Scholar
Derosa, G. et al. Matrix metalloproteinase-2 and -9 levels in obese patients. Endothelium 15, 219–224 (2008).
Google Scholar
Dansie, L. E. et al. Long-lasting effects of minocycline on behavior in young but not adult Fragile X mice. Neuroscience https://doi.org/10.1016/j.neuroscience.2013.04.058 (2013).
Google Scholar
DaWalt, L. S., Fielding-Gebhardt, H., Fleming, K. K., Warren, S. F. & Brady, N. Change in behavior problems from childhood through adolescence for children with Fragile X Syndrome. J. Autism. Dev. Disord. 52, 4056–4066 (2022).
Google Scholar
Cregenzán-Royo, O., Brun-Gasca, C. & Fornieles-Deu, A. Behavior problems and social competence in Fragile X Syndrome: A systematic review. Genes (Basel) 13, 280 (2022).
Google Scholar
Crawford, H., Moss, J., Oliver, C. & Riby, D. Differential effects of anxiety and autism on social scene scanning in males with Fragile X Syndrome. J. Neurodev. Disord. 9, 9 (2017).
Google Scholar
Utari, A. et al. Side effects of minocycline treatment in patients with Fragile X Syndrome and exploration of outcome measures. Am. J. Intellect. Dev. Disabil. 115, 433–443 (2010).
Google Scholar
Abdallah, M. W. et al. Amniotic fluid MMP-9 and neurotrophins in autism spectrum disorders: an exploratory study. Autism. Res. 5, 428–433 (2012).
Google Scholar
Lord, J. R., Mashayekhi, F. & Salehi, Z. How matrix metalloproteinase (MMP)-9 (rs3918242) polymorphism affects MMP-9 serum concentration and associates with autism spectrum disorders: A case-control study in Iranian population. Dev. Psychopathol. 34, 882–888 (2022).
Google Scholar
Budimirovic, D. B. et al. Updated report on tools to measure outcomes of clinical trials in Fragile X Syndrome. J. Neurodev. Disord. 9, 14 (2017).
Google Scholar