SWVRC Fianance, Loans & Debt

Main Menu

  • Home
  • Coefficient of Variation
  • Temporal
  • Nasdaq
  • MSCIWI
  • Debt

SWVRC Fianance, Loans & Debt

Header Banner

SWVRC Fianance, Loans & Debt

  • Home
  • Coefficient of Variation
  • Temporal
  • Nasdaq
  • MSCIWI
  • Debt
Coefficient of Variation
Home›Coefficient of Variation›Altered extracellular mRNA communication in postpartum depression is associated with decreased autophagy

Altered extracellular mRNA communication in postpartum depression is associated with decreased autophagy

By Maureen Bellinger
September 22, 2022
0
0
  • Lindahl V, Pearson JL, Colpe L. Prevalence of suicidality during pregnancy and the postpartum. Arch Women’s Ment Health. 2005;8:77–87.

    CAS 
    Article 

    Google Scholar 

  • Righetti-Veltema M, Conne-Perréard E, Bousquet A, Manzano J. Postpartum depression and mother–infant relationship at 3 months old. J Affect Disord. 2002;70:291–306.

    PubMed 
    Article 

    Google Scholar 

  • Righetti-Veltema M, Bousquet A, Manzano J. Impact of postpartum depressive symptoms on mother and her 18-month-old infant. Eur Child Adolesc Psychiatry. 2003;12:75–83.

    PubMed 
    Article 

    Google Scholar 

  • Bernard-Bonnin AC. Maternal depression and child development. Paediatrics Child Health. 2004;9:575–83.

    Article 

    Google Scholar 

  • Murray L. The impact of postnatal depression on infant development. J Child Psychol Psychiatry. 1992;33:543–61.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Lyons-Ruth K, Zoll D, Connell D, Grunebaum HU. The depressed mother and her one-year-old infant: Environment, interaction, attachment, and infant development. New Directions for Child and Adolescent. Development. 1986;1986:61–82.

    Google Scholar 

  • Halligan SL, Murray L, Martins C, Cooper PJ. Maternal depression and psychiatric outcomes in adolescent offspring: A 13-year longitudinal study. J Affect Disord. 2007;97:145–54.

    PubMed 
    Article 

    Google Scholar 

  • Ruth Feldman PD, Adi Granat PD, Clara Pariente MA, Hannah Kanety PD, Jacob Kuint MD, Eva, et al. Maternal depression and anxiety across the postpartum year and infant social engagement, fear regulation, and stress reactivity. J Am Acad Child Adolesc Psychiatry. 2009;48:919–27.

    PubMed 
    Article 

    Google Scholar 

  • McEvoy K, Osborne LM, Nanavati J, Payne JL. Reproductive affective disorders: a review of the genetic evidence for premenstrual dysphoric disorder and postpartum depression. Curr Psychiatry Rep. 2017;19:94.

    PubMed 
    Article 

    Google Scholar 

  • Bloch M, Schmidt PJ, Danaceau M, Murphy J, Nieman L, Rubinow DR. Effects of gonadal steroids in women with a history of postpartum depression. Am J Psychiatry. 2000;157:924–30.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Guintivano J, Brown T, Newcomer A, Jones M, Cox O, Maher BS, et al. Identification and replication of a combined epigenetic and genetic biomarker predicting suicide and suicidal behaviors. Am J Psychiatry. 2014;171:1287–96.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Kimmel M, Clive M, Gispen F, Guintivano J, Brown T, Cox O, et al. Oxytocin receptor DNA methylation in postpartum depression. Psychoneuroendocrinology. 2016;69:150–60.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • McEvoy K, Payne JL, Osborne LM. Neuroactive steroids and perinatal depression: a review of recent literature. Curr Psychiatry Rep. 2018;20:78.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Jairaj C, O’Leary N, Doolin K, Farrell C, McCarthy A, McAuliffe FM, et al. The hypothalamic-pituitary-adrenal axis in the perinatal period: Its relationship with major depressive disorder and early life adversity. World J Biol Psychiatry: Off J World Federation Societies Biol Psychiatry. 2020;21:552–63.

    Article 

    Google Scholar 

  • Minaldi E, D’Andrea S, Castellini C, Martorella A, Francavilla F, Francavilla S, et al. Thyroid autoimmunity and risk of post-partum depression: a systematic review and meta-analysis of longitudinal studies. J Endocrinol Invest. 2020;43:271–7.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Osborne LM, Monk C. Perinatal depression-the fourth inflammatory morbidity of pregnancy?: Theory and literature review. Psychoneuroendocrinology. 2013;38:1929–52.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Osborne LM, Gilden J, Kamperman AM, Hoogendijk WJG, Spicer J, Drexhage HA, et al. T-cell defects and postpartum depression. Brain Behav Immun. 2020;87:397–403.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Sherer ML, Posillico CK, Schwarz JM. The psychoneuroimmunology of pregnancy. Front Neuroendocrinol. 2018;51:25–35.

    PubMed 
    Article 

    Google Scholar 

  • Robbins PD, Morelli AE. Regulation of immune responses by extracellular vesicles. Nat Rev Immunol. 2014;14:195–208.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Andaloussi SEL, Mäger I, Breakefield XO, Wood MJ. Extracellular vesicles: biology and emerging therapeutic opportunities. Nat Rev Drug Disco. 2013;12:347–57.

    Article 
    CAS 

    Google Scholar 

  • Salomon C, Torres MJ, Kobayashi M, Scholz-Romero K, Sobrevia L, Dobierzewska A, et al. A gestational profile of placental exosomes in maternal plasma and their effects on endothelial cell migration. PloS One. 2014;9:e98667.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Radu CM, Campello E, Spiezia L, Dhima S, Visentin S, Gavasso S, et al. Origin and levels of circulating microparticles in normal pregnancy: A longitudinal observation in healthy women. Scand J Clin Lab Invest. 2015;75:487–95.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Ng YH, Rome S, Jalabert A, Forterre A, Singh H, Hincks CL, et al. Endometrial exosomes/microvesicles in the uterine microenvironment: a new paradigm for embryo-endometrial cross talk at implantation. PloS One. 2013;8:e58502.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Miura K, Higashijima A, Mishima H, Miura S, Kitajima M, Kaneuchi M, et al. Pregnancy-associated microRNAs in plasma as potential molecular markers of ectopic pregnancy. Fertil Steril. 2015;103:1202–8.e1.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Vilella F, Moreno-Moya JM, Balaguer N, Grasso A, Herrero M, Martínez S, et al. Hsa-miR-30d, secreted by the human endometrium, is taken up by the pre-implantation embryo and might modify its transcriptome. Development. 2015;142:3210–21.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Salomon C, Yee S, Scholz-Romero K, Kobayashi M, Vaswani K, Kvaskoff D, et al. Extravillous trophoblast cells-derived exosomes promote vascular smooth muscle cell migration. Front Pharmacol. 2014;5:175.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Delorme-Axford E, Donker RB, Mouillet JF, Chu T, Bayer A, Ouyang Y, et al. Human placental trophoblasts confer viral resistance to recipient cells. Proc Natl Acad Sci USA. 2013;110:12048–53. https://doi.org/10.1073/pnas.1304718110.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fallen S, Baxter D, Wu X, Kim TK, Shynlova O, Lee MY, et al. Extracellular vesicle RNAs reflect placenta dysfunction and are a biomarker source for preterm labour. J Cell Mol Med. 2018;22:2760–73.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Richardson LS, Taylor RN, Menon R. Reversible EMT and MET mediate amnion remodeling during pregnancy and labor. Sci Signal. 2020;13:eaay1486.

  • Nation GK, Saffold CE, Pua HH. Secret messengers: Extracellular RNA communication in the immune system. Immunol Rev. 2021;304:62–76.

  • Salomon C, Scholz-Romero K, Sarker S, Sweeney E, Kobayashi M, Correa P, et al. Gestational diabetes mellitus is associated with changes in the concentration and bioactivity of placenta-derived exosomes in maternal circulation across gestation. Diabetes. 2016;65:598–609.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Jayabalan N, Nair S, Nuzhat Z, Rice GE, Zuñiga FA, Sobrevia L, et al. Cross talk between adipose tissue and placenta in obese and gestational diabetes mellitus pregnancies via exosomes. Front Endocrinol (Lausanne). 2017;8:239.

    Article 

    Google Scholar 

  • Salomon C, Guanzon D, Scholz-Romero K, Longo S, Correa P, Illanes SE, et al. Placental exosomes as early biomarker of preeclampsia: potential role of exosomal MicroRNAs across gestation. J Clin Endocrinol Metab. 2017;102:3182–94.

    PubMed 
    Article 

    Google Scholar 

  • Knight M, Redman CW, Linton EA, Sargent IL. Shedding of syncytiotrophoblast microvilli into the maternal circulation in pre-eclamptic pregnancies. Br J Obstet Gynaecol. 1998;105:632–40.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Germain SJ, Sacks GP, Sooranna SR, Sargent IL, Redman CW. Systemic inflammatory priming in normal pregnancy and preeclampsia: the role of circulating syncytiotrophoblast microparticles. J Immunol. 2007;178:5949–56.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Pillay P, Moodley K, Moodley J, Mackraj I. Placenta-derived exosomes: potential biomarkers of preeclampsia. Int J Nanomed. 2017;12:8009–23.

    CAS 
    Article 

    Google Scholar 

  • Benichou G, Wang M, Ahrens K, Madsen JC. Extracellular vesicles in allograft rejection and tolerance. Cell Immunol. 2020;349:104063.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Nasca C, Dobbin J, Bigio B, Watson K, de Angelis P, Kautz M, et al. Insulin receptor substrate in brain-enriched exosomes in subjects with major depression: on the path of creation of biosignatures of central insulin resistance. Mol Psychiatry. 2021;26:5140–9.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Saeedi S, Nagy C, Ibrahim P, Théroux JF, Wakid M, Fiori LM, et al. Neuron-derived extracellular vesicles enriched from plasma show altered size and miRNA cargo as a function of antidepressant drug response. Mol Psychiatry. 2021;26:7417–24.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Goetzl EJ, Wolkowitz OM, Srihari VH, Reus VI, Goetzl L, Kapogiannis D, et al. Abnormal levels of mitochondrial proteins in plasma neuronal extracellular vesicles in major depressive disorder. Mol Psychiatry. 2021;26:7355–62.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Osborne LM, Voegtline K, Standeven LR, Sundel B, Pangtey M, Hantsoo L, et al. High worry in pregnancy predicts postpartum depression. J Affect Disord. 2021;294:701–6.

    PubMed 
    Article 

    Google Scholar 

  • Therneau T, Hart S, Kocher J-P. Calculating samplesSize estimates for RNA Seq studies. R package version 1320. 2021.

  • Roehr JT, Dieterich C, Reinert K. Flexbar 3.0 – SIMD and multicore parallelization. Bioinforma (Oxf, Engl). 2017;33:2941–2.

    CAS 
    Article 

    Google Scholar 

  • Kim D, Langmead B, Salzberg SL. HISAT: a fast spliced aligner with low memory requirements. Nat Methods. 2015;12:357–60. https://doi.org/10.1038/nmeth.3317.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Darby MM, Leek JT, Langmead B, Yolken RH, Sabunciyan S. Widespread splicing of repetitive element loci into coding regions of gene transcripts. Hum Mol Genet. 2016;25:4962–82.

  • Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinforma (Oxf, Engl). 2010;26:139–40.

    CAS 
    Article 

    Google Scholar 

  • Newman AM, Steen CB, Liu CL, Gentles AJ, Chaudhuri AA, Scherer F, et al. Determining cell type abundance and expression from bulk tissues with digital cytometry. Nat Biotechnol. 2019;37:773–82.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Krishnaswami SR, Grindberg RV, Novotny M, Venepally P, Lacar B, Bhutani K, et al. Using single nuclei for RNA-seq to capture the transcriptome of postmortem neurons. Nat Protoc. 2016;11:499–524.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Huang DW, Sherman BT, Tan Q, Kir J, Liu D, Bryant D, et al. DAVID Bioinformatics Resources: expanded annotation database and novel algorithms to better extract biology from large gene lists. Nucleic Acids Res. 2007;35:W169–75.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Levine B, Mizushima N, Virgin HW. Autophagy in immunity and inflammation. Nature. 2011;469:323–35.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Nakamura S, Yoshimori T. New insights into autophagosome-lysosome fusion. J Cell Sci. 2017;130:1209–16.

    CAS 
    PubMed 

    Google Scholar 

  • Yu L, Chen Y, Tooze SA. Autophagy pathway: Cellular and molecular mechanisms. Autophagy. 2018;14:207–15.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Ao X, Zou L, Wu Y. Regulation of autophagy by the Rab GTPase network. Cell Death Differ. 2014;21:348–58.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Webster CP, Smith EF, Grierson AJ, De Vos KJ. C9orf72 plays a central role in Rab GTPase-dependent regulation of autophagy. Small GTPases. 2018;9:399–408.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T, et al. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. Embo J. 2000;19:5720–8.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • He M, Ding Y, Chu C, Tang J, Xiao Q, Luo ZG. Autophagy induction stabilizes microtubules and promotes axon regeneration after spinal cord injury. Proc Natl Acad Sci USA. 2016;113:11324–9.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Barve G, Sanyal P, Manjithaya R. Septin localization and function during autophagy. Curr Genet. 2018;64:1037–41.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Sotthibundhu A, McDonagh K, von Kriegsheim A, Garcia-Munoz A, Klawiter A, Thompson K, et al. Rapamycin regulates autophagy and cell adhesion in induced pluripotent stem cells. Stem Cell Res Ther. 2016;7:166.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Fu R, Jiang X, Li G, Zhu Y, Zhang H. Junctional complexes in epithelial cells: sentinels for extracellular insults and intracellular homeostasis. Febs J. 2021. Online ahead of print.

  • Fung C, Lock R, Gao S, Salas E, Debnath J. Induction of autophagy during extracellular matrix detachment promotes cell survival. Mol Biol Cell. 2008;19:797–806.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Zhang J, Wu K, Xiao X, Liao J, Hu Q, Chen H, et al. Autophagy as a regulatory component of erythropoiesis. Int J Mol Sci. 2015;16:4083–94.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Martinez-Martin N, Maldonado P, Gasparrini F, Frederico B, Aggarwal S, Gaya M, et al. A switch from canonical to noncanonical autophagy shapes B cell responses. Science 2017;355:641–7.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Gordon S, Taylor PR. Monocyte and macrophage heterogeneity. Nat Rev Immunol. 2005;5:953–64.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Sabunciyan S. Gene expression profiles associated with brain aging are altered in schizophrenia. Sci Rep. 2019;9:5896.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Darby MM, Yolken RH, Sabunciyan S. Consistently altered expression of gene sets in postmortem brains of individuals with major psychiatric disorders. Transl Psychiatry. 2016;6:e890. https://doi.org/10.1038/tp.2016.173.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gandal MJ, Haney JR, Parikshak NN, Leppa V, Ramaswami G, Hartl C, et al. Shared molecular neuropathology across major psychiatric disorders parallels polygenic overlap. Science. 2018;359:693–7.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Fromer M, Roussos P, Sieberts SK, Johnson JS, Kavanagh DH, Perumal TM. et al. Gene expression elucidates functional impact of polygenic risk for schizophrenia. Nat Neurosci. 2016;19:1442–53.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Mizushima N, Levine B. Autophagy in mammalian development and differentiation. Nat Cell Biol. 2010;12:823–30.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Komatsu M, Waguri S, Chiba T, Murata S, Iwata J, Tanida I, et al. Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature. 2006;441:880–4.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Hara T, Nakamura K, Matsui M, Yamamoto A, Nakahara Y, Suzuki-Migishima R, et al. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature. 2006;441:885–9.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Nixon RA, Wegiel J, Kumar A, Yu WH, Peterhoff C, Cataldo A, et al. Extensive involvement of autophagy in Alzheimer disease: an immuno-electron microscopy study. J Neuropathol Exp Neurol. 2005;64:113–22.

    PubMed 
    Article 

    Google Scholar 

  • Kuma A, Hatano M, Matsui M, Yamamoto A, Nakaya H, Yoshimori T, et al. The role of autophagy during the early neonatal starvation period. Nature. 2004;432:1032–6.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Tomoda T, Yang K, Sawa A. Neuronal autophagy in synaptic functions and psychiatric disorders. Biol Psychiatry. 2020;87:787–96.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Gassen NC, Rein T. Is there a role of autophagy in depression and antidepressant action? Front Psychiatry. 2019;10:337.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Po WW, Thein W, Khin PP, Khing TM, Han KWW, Park CH, et al. Fluoxetine simultaneously induces both apoptosis and autophagy in human gastric adenocarcinoma cells. Biomol Ther (Seoul). 2020;28:202–10.

    Article 

    Google Scholar 

  • Sun D, Zhu L, Zhao Y, Jiang Y, Chen L, Yu Y, et al. Fluoxetine induces autophagic cell death via eEF2K-AMPK-mTOR-ULK complex axis in triple negative breast cancer. Cell Prolif. 2018;51:e12402.

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Bowie M, Pilie P, Wulfkuhle J, Lem S, Hoffman A, Desai S, et al. Fluoxetine induces cytotoxic endoplasmic reticulum stress and autophagy in triple negative breast cancer. World J Clin Oncol. 2015;6:299–311.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Gulbins A, Schumacher F, Becker KA, Wilker B, Soddemann M, Boldrin F, et al. Antidepressants act by inducing autophagy controlled by sphingomyelin-ceramide. Mol Psychiatry. 2018;23:2324–46.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Shu X, Sun Y, Sun X, Zhou Y, Bian Y, Shu Z, et al. The effect of fluoxetine on astrocyte autophagy flux and injured mitochondria clearance in a mouse model of depression. Cell Death Dis. 2019;10:577.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Yan J, Porch MW, Court-Vazquez B, Bennett MVL, Zukin RS. Activation of autophagy rescues synaptic and cognitive deficits in fragile X mice. Proc Natl Acad Sci USA. 2018;115:E9707–e16.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tang G, Gudsnuk K, Kuo SH, Cotrina ML, Rosoklija G, Sosunov A, et al. Loss of mTOR-dependent macroautophagy causes autistic-like synaptic pruning deficits. Neuron 2014;83:1131–43.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Gonçalves VF, Cappi C, Hagen CM, Sequeira A, Vawter MP, Derkach A, et al. A comprehensive analysis of nuclear-encoded mitochondrial genes in schizophrenia. Biol Psychiatry. 2018;83:780–9.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Kim Y, Vadodaria KC, Lenkei Z, Kato T, Gage FH, Marchetto MC, et al. Mitochondria, metabolism, and redox mechanisms in psychiatric disorders. Antioxid Redox Signal. 2019;31:275–317.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Rezin GT, Amboni G, Zugno AI, Quevedo J, Streck EL. Mitochondrial dysfunction and psychiatric disorders. Neurochem Res. 2009;34:1021–9.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Topol A, English JA, Flaherty E, Rajarajan P, Hartley BJ, Gupta S. et al. Increased abundance of translation machinery in stem cell-derived neural progenitor cells from four schizophrenia patients. Transl Psychiatry. 2015;5:e662. https://doi.org/10.1038/tp.2015.118.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Luppi P, Haluszczak C, Betters D, Richard CA, Trucco M, DeLoia JA. Monocytes are progressively activated in the circulation of pregnant women. J Leukoc Biol. 2002;72:874–84.

    CAS 
    PubMed 

    Google Scholar 

  • Sabunciyan S, Maher B, Bahn S, Dickerson F, Yolken RH. Association of DNA methylation with acute mania and inflammatory markers. PLoS One. 2015;10:e0132001. https://doi.org/10.1371/journal.pone.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fond G, Godin O, Boyer L, Berna F, Andrianarisoa M, Coulon N, et al. Chronic low-grade peripheral inflammation is associated with ultra resistant schizophrenia. Results from the FACE-SZ cohort. Eur Arch Psychiatry Clin Neurosci. 2019;269:985–92.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Fiedorowicz JG, Prossin AR, Johnson CP, Christensen GE, Magnotta VA, Wemmie JA. Peripheral inflammation during abnormal mood states in bipolar I disorder. J Affect Disord. 2015;187:172–8.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Krishnadas R, Cavanagh J. Depression: an inflammatory illness? J Neurol Neurosurg Psychiatry. 2012;83:495–502.

    PubMed 
    Article 

    Google Scholar 

  • Smith RS. The macrophage theory of depression. Med Hypotheses. 1991;35:298–306.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Kreisel T, Frank MG, Licht T, Reshef R, Ben-Menachem-Zidon O, Baratta MV, et al. Dynamic microglial alterations underlie stress-induced depressive-like behavior and suppressed neurogenesis. Mol Psychiatry. 2014;19:699–709.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Prinz M, Jung S, Priller J. Microglia biology: one century of evolving concepts. Cell. 2019;179:292–311.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Mondelli V, Vernon AC, Turkheimer F, Dazzan P, Pariante CM. Brain microglia in psychiatric disorders. Lancet Psychiatry. 2017;4:563–72.

    PubMed 
    Article 

    Google Scholar 

  • Salter MW, Stevens B. Microglia emerge as central players in brain disease. Nat Med. 2017;23:1018–27.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Sherer ML, Posillico CK, Schwarz JM. An examination of changes in maternal neuroimmune function during pregnancy and the postpartum period. Brain Behav Immun. 2017;66:201–9.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Posillico CK, Schwarz JM. An investigation into the effects of antenatal stressors on the postpartum neuroimmune profile and depressive-like behaviors. Behavioural Brain Res. 2016;298(Pt B):218–28.

    Article 

    Google Scholar 

  • Tan X, Du X, Jiang Y, Botchway BOA, Hu Z, Fang M. Inhibition of autophagy in microglia alters depressive-like behavior via BDNF pathway in postpartum depression. Front Psychiatry. 2018;9:434.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Related posts:

    1. Predicting tissue-specific gene expression from complete blood transcriptome
    2. MRI biomarker to foretell LNM in T3 stage rectal carcinoma
    3. Medical Components Related to Excessive Glycemic Variability Outlined by
    4. Significance of RDW in predicting mortality in COVID‐19—An evaluation of 622 circumstances – Soni – – Worldwide Journal of Laboratory Hematology

    Categories

    • Coefficient of Variation
    • Debt
    • MSCIWI
    • Nasdaq
    • Temporal
    • Terms and Conditions
    • Privacy Policy