Acetone sensing in liquid and gas phases using cyclic voltammetry

Wang, C. C., Weng, Y. C. & Chou, T. C. Acetone sensor using lead foil as working electrode. Sens. Actuators B Chem. 122, 591–595 (2007).
Google Scholar
Cranley, P. E. Enzyme-based system and sensor for measuring acetone. U.S. Patent application 10,494,923, Apr. 21 (2005).
Song, P., Wang, Q. & Yang, Z. Preparation, characterization and acetone sensing properties of Ce-doped SnO2 hollow spheres. Sens. Actuators B 173, 839–846 (2012).
Google Scholar
Kuar, J., Anand, K., Kaur, A. & Singh, R. C. Sensitive and selective acetone sensor based on Gd doped WO3/reduced graphene oxide nanocomposite. Sens. Actuators B Chem 258, 1022–1035 (2017).
Google Scholar
Kaur, J., Anand, K., Kohli, N., Kaur, A. & Singh, R. C. Temperature dependent selective detection of hydrogen and acetone using Pd doped WO3/Reduced graphene oxide nanocomposite. Chem. Phys. Lett. 701, 115–125 (2018).
Google Scholar
Ezhilan, M., Nesakumar, N., Babu, K. J., Srinandan, C. S. & Rayappan, J. B. B. An electronic nose for royal delicious apple quality assessment—A tri-layer approach. Food Res. Int. 109, 44–51 (2018).
Google Scholar
Motsegood, P. & Leddy, J. Detection of acetone on human breath using cyclic voltammetry. ECS Trans. 41, 1–7. https://doi.org/10.1149/1.3684414 (2012).
Google Scholar
Righettoni, M., Amann, A. & Pratsinis, S. E. Breath analysis by nanostructured metal oxides as chemo chemo-resistive gas sensors, sensors. Mater. Today 18, 163–171 (2015).
Google Scholar
Ruzsányi, V. & Péter Kalapos, M. Breath acetone as a potential marker in clinical practice. J. Breath Res. 11(2), 024002. https://doi.org/10.1088/1752-7163/aa66d3 (2017).
Google Scholar
Königstein, K. et al. Breath acetone change during aerobic exercise is moderated by cardiorespiratory fitness. J. Breath Res. https://doi.org/10.1088/1752-7163/abba6c (2020).
Google Scholar
Güntner, A. T. et al. Noninvasive body fat burn monitoring from exhaled acetone with Si-doped WO3-sensing nanoparticles. Anal. Chem. 89(19), 10578–10584. https://doi.org/10.1021/acs.analchem.7b02843 (2017) (Epub 2017 Sep 22).
Google Scholar
Kathy, M.-V., Sergei, S. L. & Stephen, C. C. Breath acetone is a reliable indicator of ketosis in adults consuming ketogenic meals. Am. J. Clin. Nutr. 76(1), 65–70. https://doi.org/10.1093/ajcn/76.1.65 (2002).
Google Scholar
FIGARO. TGS 822-Product Information. www.figarosensor.com/products/822pdf.pdf (accessed 12 June 2018).
Obeidat, Y. The most common methods for breath acetone concentration detection: A review. IEEE Sens. J. 21(13), 14540–14558. https://doi.org/10.1109/JSEN.2021.3074610 (2021).
Google Scholar
Deng, C., Zhang, J., Yu, X., Zhang, W. & Zhang, X. Determination of acetone in human breath by gas chromatography–mass spectrometry and solid-phase microextraction with on-fiber derivatization. J. Chromatogr. B 810(2), 269–275 (2004).
Google Scholar
Deng, C., Zhang, J., Yu, X., Zhang, W. & Zhang, X. Determination of acetone in human breath by gas chromatography-mass spectrometry and solid-phase microextraction with on-fiber derivatization. J. Chromatogr. B. 810, 269–275 (2004).
Google Scholar
Ligor, T. et al. The analysis of healthy volunteers’ exhaled breath by the use of solid-phase microextraction and GC-MS. J. Breath Res. 2, 046006 (2008).
Google Scholar
Ruzsanyi, V. et al. Detection of human metabolites using multi-capillary columns coupled to ion mobility spectrometers. J. Chromatogr. A 1084, 145–151 (2005).
Google Scholar
Lapthorn, C., Pullen, F. & Chowdhry, B. Z. Ion mobility spectrometry-massspectrometry (IMS-MS) of small molecules: Separating and assigning structures to ions. Mass Spectrom. 32, 43–71 (2013).
Google Scholar
Schwarz, K. et al. Breath acetone—Aspects of normal physiology related to age and gender as determined in a PTR-MS study. J. Breath Res. 3, 027003 (2009).
Google Scholar
King, J. et al. Dynamic profiles of volatile organic compounds in exhaled breath as determined by a coupled PTR-MS/GC-MS study. Physiol. Meas. 31, 1169 (2010).
Google Scholar
Senthilmohan, S. T., Milligan, D. B., McEwan, M. J., Freeman, C. G. & Wilson, P. F. Quantitative analysis of trace gases of breath during exercise using the new SIFT-MS technique. Redox Rep. 5, 151–153 (2000).
Google Scholar
Diskin, A. M., Spanel, P. & Smith, D. Time variation of ammonia, acetone, isoprene and ethanol in breath: A quantitative SIFT-MS study over 30 days. Physiol. Meas. 24, 107–120 (2001).
Google Scholar
Turner, C., Spanel, P. & Smith, D. A longitudinal study of ammonia, acetone and propanol in the exhaled breath of 30 subjects using selected ion flow tube mass spectrometry. SIFT-MS. Physiol. Meas. 27, 321–337 (2006).
Google Scholar
Wang, C. & Mbi, A. A new acetone detection device using cavity ringdown spectroscopy at 266 nm: Evaluation of the instrument performance using acetone sample solutions. Meas. Sci. Technol. 18, 2731–2741 (2007).
Google Scholar
Sun, M. et al. A fully integrated standlone portable cavity ringdown breath acetone analyzer. Rev. Sci. Instrum. 86, 095003 (2015).
Google Scholar
Jiang, C. et al. A portable real-time ringdown breath acetone analyzer: Toward diabetic screening and management. Sensors 16, 1199 (2016).
Google Scholar
Massick, S. M., Vakhtin, A. Breath acetone detection. In Proc. SPIE Optical Methods in the Life Sciences. 6386, paper no. 63860O (2006).
Bratu, A. M., Petrus, M. & Popa, C. Laser-based spectrometer for opitcal trace gas detection in young adults with autism. Microchem. J. 138, 203–208 (2018).
Google Scholar
Wang, C. & Sahay, P. Breath analysis using laser spectroscopic techniques: Breath biomarkers, spectral fingerprints, and detection limits. Sensors 9, 8230–8262 (2009).
Google Scholar
Musio, F. & Ferrara, M. C. Low frequency a.c. response of polypyrrole gas sensors. Sens. Actuator B Chem. 41, 97–103 (1997).
Google Scholar
Bai, H. & Shi, G. Gas sensors based on conducting polymers. Sensors. 7(3), 267–307. https://doi.org/10.3390/s7030267 (2007).
Google Scholar
Wang, Y. et al. Recent advancements in flexible and wearable sensors for biomedical and healthcare applications. J. Phys. D Appl. Phys. https://doi.org/10.1088/1361-6463/ac3c73 (2021).
Google Scholar
Bene, R., Kiss, G., Perczel, I. V., Meyer, F. A. & Reti, F. Application of quadrupole mass spectrometer for the analysis of near-surface gas composition during DC sensor-tests. Vacuum 50, 331–337 (1998).
Google Scholar
Ronot, C., Archenault, M., Gagnaire, H. & Goure, J. P. Detection of chemical vapors with a specifically coated optical-fiber sensor. Sens. Actuator B Chem. 11, 375–381 (1993).
Google Scholar
Dickinson, T. et al. A chemical-detecting system based on a cross-reactive optical sensor array. Nature 382, 697–700. https://doi.org/10.1038/382697a0 (1996).
Google Scholar
Anno, Y., Maekawa, T., Tamaki, J., Asano, Y. & Hayashi, K. Zinc-oxide-based semiconductor sensors for detecting acetone and capronaldehyde in the vapor of consomm´e soup. Sens. Actuator B Chem. 24, 623–627 (1995).
Google Scholar
Neri, G., Bonavita, A., Micali, G. & Donato, N. Design and development of a breath acetone MOS sensor for ketogenic diets control. IEEE Sens. J. 10(1), 131–136. https://doi.org/10.1109/JSEN.2009.2035663 (2010).
Google Scholar
Barko, G. & Hlavay, J. Application of principal component analysis for the characterisation of a piezoelectric sensors array. Anal. Chim. Acta 367, 135–143 (1998).
Google Scholar
Barkó, G., Abonyi, J. & Hlavay, J. Application of fuzzy clustering and piezoelectric chemical sensor array for investigation on organic compounds. Anal. Chim. Acta 398(2–3), 219–226. https://doi.org/10.1016/S0003-2670(99)00377-3 (1999).
Google Scholar
Ahmed, H., Daoudi, A. & Laroussi, K. Application of fuzzy fault detection and isolation approach to the compression system surge. ACTA Press Control Intell. Syst. 39(3), 151–158 (2011).
Google Scholar
Liu, B., Zhuang, J. & Wei, G. Recent advances in the design of colorimetric sensors for environmental monitoring. Environ. Sci. 7, 2195–2213 (2020).
Google Scholar
Wang, D. I. et al. Colorimetric sensor for online accurate detection of breath acetone. ACS Sens. https://doi.org/10.1021/acssensors.0c02025 (2020).
Google Scholar
Zhang, L., Qin, H., Song, P., Hu, J. & Jiang, M. Electric properties and acetone sensing characteristics of La1−xPbxFeO3 perovskite system. Mater. Chem. Phys. 98, 358–362 (2006).
Google Scholar
Liu, X., Hu, J., Cheng, B., Qin, H. & Jiang, M. Acetone gas sensing properties of SmFe1−xMgxO3 perovskite oxides. Sens. Actuators B Chem. 134, 483–487 (2008).
Google Scholar
Yang, M., Huo, L. H., Zhao, H., Gao, S. & Rong, Z. M. Electrical properties and acetone-sensing characteristics of LaNi1−xTixO3 perovskite system prepared by amorphous citrate decomposition. Sens. Actuators B Chem. 143, 111–118 (2009).
Google Scholar
Zhao, J., Huo, L. H., Gao, S., Zhao, H. & Zhao, J. G. Alcohols and acetone sensing properties of SnO2 thin films deposited by dip-coating. Sens. Actuators B Chem. 115, 460–464 (2006).
Google Scholar
Patil, S. B., Patil, P. P. & More, M. A. Acetone vapour sensing characteristics of cobalt-doped SnO2 thin films. Sens. Actuators B Chem. 125, 126–130 (2007).
Google Scholar
Qin, L. et al. Template-free synthesis of square shaped SnO2 nanowires: the temperature effect and acetone gas sensors. Nanotechnology 19, 185705 (2008).
Google Scholar
Manolis, A. The diagnostic potential of breath analysis. Clin. Chem. 29(1), 5–15. https://doi.org/10.1093/clinchem/29.1.5 (1983).
Google Scholar
Röck, F., Barsan, N. & Weimar, U. Electronic nose: Current status and future trends. Chem. Rev. 108, 705–725 (2008).
Google Scholar
Broza, Y. Y. & Haick, H. Nanomaterial-based sensors for detection of disease by volatile organic compounds. Nanomedicine 8, 785–806 (2013).
Google Scholar
Saasa, V. et al. Sensing technologies for detection of acetone in human breath for diabetes diagnosis and monitoring. Diagnostics 8(1), 12. https://doi.org/10.3390/diagnostics8010012 (2018).
Google Scholar
Landini, B., Cranley, P., McIntyre, J. Diet and exercise effects on breath acetone concentration measured using an enzymatic electrochemical sensor, presented at the Obesity Society, Annu. Scientific Meeting, New Orleans, LA, paper 719-P (2007).
Landini, B. & Bravard, S. Breath acetone concentration measured using a palm-size enzymatic sensor system. IEEE Sens. J. 9(12), 1802–1807. https://doi.org/10.1109/jsen.2009.2033305 (2009).
Google Scholar
Rathee, K., Dhull, V., Dhull, R. & Singh, S. Biosensors based on electrochemical lactate detection: A comprehensive review. Biochem. Biophys. Rep. 5, 35–54. https://doi.org/10.1016/j.bbrep.2015.11.010 (2016).
Google Scholar
Usman, F. et al. A review of biosensors for non-invasive diabetes monitoring and screening in human exhaled breath. IEEE Access 7, 5963–5974. https://doi.org/10.1109/access.2018.2887066 (2019).
Google Scholar
Pohanka, M. & Skládal, P. Electrochemical biosensors—Principles and applications. J. Appl. Biomed. 6(2), 57–64. https://doi.org/10.32725/jab.2008.008 (2008).
Google Scholar
Wong, Y. C., Ang, B., Haseeb, B., Aainaa, A. & Wong, Y. H. Review—Conducting polymers as chemiresistive gas sensing materials: A review. J. Electrochem. Soc. 167, 037503. https://doi.org/10.1149/2.0032003JES (2020).
Google Scholar
Sakthivel, M. & Weppner, W. Electrode kinetics of amperometric hydrogen sensors for hydrogen detection at low parts per million level. J. Solid State Electrochem. 11, 561–570. https://doi.org/10.1007/s10008-006-0195-y (2007).
Google Scholar
Yan, D. et al. Electrochemical synthesis of ZnO nanorods/porous silicon composites and their gas-sensing properties at room temperature. J. Solid State Electrochem. 20, 459–468. https://doi.org/10.1007/s10008-015-3058-6 (2016).
Google Scholar
Dalawai, S. P. et al. Influence of Ni2+ and Sn4+ substitution on gas sensing behaviour of zinc ferrite thick films. J. Solid State Electrochem. 20, 2363–2372. https://doi.org/10.1007/s10008-016-3254-z (2016).
Google Scholar
Landini, B. E. & Bravard, S. T. Effect of exhalation variables on the current response of an enzymatic breath acetone sensing device. IEEE Sens. J. 10(1), 19–24. https://doi.org/10.1109/JSEN.2009.2035760 (2010).
Google Scholar
Perini, N. et al. Mechanistic aspects of the comparative oscillatory electrochemical oxidation of formic acid and methanol on platinum electrode. J. Solid State Electrochem. 24, 1811–1818. https://doi.org/10.1007/s10008-020-04609-y (2020).
Google Scholar
Berkes, B. B. & Inzelt, G. Generation and electrochemical nanogravimetric response of the third anodic hydrogen peak on a platinum electrode in sulfuric acid media. J. Solid State Electrochem. 18, 1239–1249. https://doi.org/10.1007/s10008-013-2164-6 (2014).
Google Scholar
Arán-Ais, R. M., Herrero, E. & Feliu, J. M. Thermodynamic studies of anion adsorption at the Pt(111) electrode surface from glycolic acid solutions. J. Solid State Electrochem. 19, 13–21. https://doi.org/10.1007/s10008-014-2646-1 (2015).
Google Scholar
Jehnert, D. et al. The effect of platinum electrode surfaces on precise primary pH measurements. J. Solid State Electrochem. 23, 485–495. https://doi.org/10.1007/s10008-018-4144-3 (2019).
Google Scholar
Chen, S. H. Wither the concepts of mole and concentration: Conceptual confusion in applying M1V1 = M2V2. Univ. J. Educ. Res. 4, 1158–1162. https://doi.org/10.13189/ujer.2016.040527 (2016).
Google Scholar
de Hemptinne, X. & Schunck, K. Electrochemical reduction of acetone. Electrocatalytic activity of platinized platinum. Trans. Faraday Soc. 65, 591–597 (1969).
Google Scholar
Bänsch, B., Härtung, Th., Baltruschat, H., Baltruschat, H. & Heitbaum, J. Reduction and oxidation of adsorbed acetone at platinum electrodes studied by DEMS. J. Electroanal. Chem. 259(1–2), 207–215. https://doi.org/10.1016/0022-0728(89)80048-8 (1989).
Google Scholar