SWVRC Fianance, Loans & Debt

Main Menu

  • Home
  • Coefficient of Variation
  • Temporal
  • Nasdaq
  • MSCIWI
  • Debt

SWVRC Fianance, Loans & Debt

Header Banner

SWVRC Fianance, Loans & Debt

  • Home
  • Coefficient of Variation
  • Temporal
  • Nasdaq
  • MSCIWI
  • Debt
Coefficient of Variation
Home›Coefficient of Variation›Acetone sensing in liquid and gas phases using cyclic voltammetry

Acetone sensing in liquid and gas phases using cyclic voltammetry

By Maureen Bellinger
June 30, 2022
0
0
  • Wang, C. C., Weng, Y. C. & Chou, T. C. Acetone sensor using lead foil as working electrode. Sens. Actuators B Chem. 122, 591–595 (2007).

    CAS 
    Article 

    Google Scholar 

  • Cranley, P. E. Enzyme-based system and sensor for measuring acetone. U.S. Patent application 10,494,923, Apr. 21 (2005).

  • Song, P., Wang, Q. & Yang, Z. Preparation, characterization and acetone sensing properties of Ce-doped SnO2 hollow spheres. Sens. Actuators B 173, 839–846 (2012).

    CAS 
    Article 

    Google Scholar 

  • Kuar, J., Anand, K., Kaur, A. & Singh, R. C. Sensitive and selective acetone sensor based on Gd doped WO3/reduced graphene oxide nanocomposite. Sens. Actuators B Chem 258, 1022–1035 (2017).

    Article 

    Google Scholar 

  • Kaur, J., Anand, K., Kohli, N., Kaur, A. & Singh, R. C. Temperature dependent selective detection of hydrogen and acetone using Pd doped WO3/Reduced graphene oxide nanocomposite. Chem. Phys. Lett. 701, 115–125 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Ezhilan, M., Nesakumar, N., Babu, K. J., Srinandan, C. S. & Rayappan, J. B. B. An electronic nose for royal delicious apple quality assessment—A tri-layer approach. Food Res. Int. 109, 44–51 (2018).

    CAS 
    Article 

    Google Scholar 

  • Motsegood, P. & Leddy, J. Detection of acetone on human breath using cyclic voltammetry. ECS Trans. 41, 1–7. https://doi.org/10.1149/1.3684414 (2012).

    CAS 
    Article 

    Google Scholar 

  • Righettoni, M., Amann, A. & Pratsinis, S. E. Breath analysis by nanostructured metal oxides as chemo chemo-resistive gas sensors, sensors. Mater. Today 18, 163–171 (2015).

    CAS 
    Article 

    Google Scholar 

  • Ruzsányi, V. & Péter Kalapos, M. Breath acetone as a potential marker in clinical practice. J. Breath Res. 11(2), 024002. https://doi.org/10.1088/1752-7163/aa66d3 (2017).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Königstein, K. et al. Breath acetone change during aerobic exercise is moderated by cardiorespiratory fitness. J. Breath Res. https://doi.org/10.1088/1752-7163/abba6c (2020).

    Article 
    PubMed 

    Google Scholar 

  • Güntner, A. T. et al. Noninvasive body fat burn monitoring from exhaled acetone with Si-doped WO3-sensing nanoparticles. Anal. Chem. 89(19), 10578–10584. https://doi.org/10.1021/acs.analchem.7b02843 (2017) (Epub 2017 Sep 22).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Kathy, M.-V., Sergei, S. L. & Stephen, C. C. Breath acetone is a reliable indicator of ketosis in adults consuming ketogenic meals. Am. J. Clin. Nutr. 76(1), 65–70. https://doi.org/10.1093/ajcn/76.1.65 (2002).

    Article 

    Google Scholar 

  • FIGARO. TGS 822-Product Information. www.figarosensor.com/products/822pdf.pdf (accessed 12 June 2018).

  • Obeidat, Y. The most common methods for breath acetone concentration detection: A review. IEEE Sens. J. 21(13), 14540–14558. https://doi.org/10.1109/JSEN.2021.3074610 (2021).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Deng, C., Zhang, J., Yu, X., Zhang, W. & Zhang, X. Determination of acetone in human breath by gas chromatography–mass spectrometry and solid-phase microextraction with on-fiber derivatization. J. Chromatogr. B 810(2), 269–275 (2004).

    CAS 
    Article 

    Google Scholar 

  • Deng, C., Zhang, J., Yu, X., Zhang, W. & Zhang, X. Determination of acetone in human breath by gas chromatography-mass spectrometry and solid-phase microextraction with on-fiber derivatization. J. Chromatogr. B. 810, 269–275 (2004).

    CAS 
    Article 

    Google Scholar 

  • Ligor, T. et al. The analysis of healthy volunteers’ exhaled breath by the use of solid-phase microextraction and GC-MS. J. Breath Res. 2, 046006 (2008).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Ruzsanyi, V. et al. Detection of human metabolites using multi-capillary columns coupled to ion mobility spectrometers. J. Chromatogr. A 1084, 145–151 (2005).

    CAS 
    Article 

    Google Scholar 

  • Lapthorn, C., Pullen, F. & Chowdhry, B. Z. Ion mobility spectrometry-massspectrometry (IMS-MS) of small molecules: Separating and assigning structures to ions. Mass Spectrom. 32, 43–71 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Schwarz, K. et al. Breath acetone—Aspects of normal physiology related to age and gender as determined in a PTR-MS study. J. Breath Res. 3, 027003 (2009).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • King, J. et al. Dynamic profiles of volatile organic compounds in exhaled breath as determined by a coupled PTR-MS/GC-MS study. Physiol. Meas. 31, 1169 (2010).

    CAS 
    Article 

    Google Scholar 

  • Senthilmohan, S. T., Milligan, D. B., McEwan, M. J., Freeman, C. G. & Wilson, P. F. Quantitative analysis of trace gases of breath during exercise using the new SIFT-MS technique. Redox Rep. 5, 151–153 (2000).

    CAS 
    Article 

    Google Scholar 

  • Diskin, A. M., Spanel, P. & Smith, D. Time variation of ammonia, acetone, isoprene and ethanol in breath: A quantitative SIFT-MS study over 30 days. Physiol. Meas. 24, 107–120 (2001).

    Article 

    Google Scholar 

  • Turner, C., Spanel, P. & Smith, D. A longitudinal study of ammonia, acetone and propanol in the exhaled breath of 30 subjects using selected ion flow tube mass spectrometry. SIFT-MS. Physiol. Meas. 27, 321–337 (2006).

    Article 

    Google Scholar 

  • Wang, C. & Mbi, A. A new acetone detection device using cavity ringdown spectroscopy at 266 nm: Evaluation of the instrument performance using acetone sample solutions. Meas. Sci. Technol. 18, 2731–2741 (2007).

    CAS 
    Article 

    Google Scholar 

  • Sun, M. et al. A fully integrated standlone portable cavity ringdown breath acetone analyzer. Rev. Sci. Instrum. 86, 095003 (2015).

    ADS 
    Article 

    Google Scholar 

  • Jiang, C. et al. A portable real-time ringdown breath acetone analyzer: Toward diabetic screening and management. Sensors 16, 1199 (2016).

    ADS 
    Article 

    Google Scholar 

  • Massick, S. M., Vakhtin, A. Breath acetone detection. In Proc. SPIE Optical Methods in the Life Sciences. 6386, paper no. 63860O (2006).

  • Bratu, A. M., Petrus, M. & Popa, C. Laser-based spectrometer for opitcal trace gas detection in young adults with autism. Microchem. J. 138, 203–208 (2018).

    CAS 
    Article 

    Google Scholar 

  • Wang, C. & Sahay, P. Breath analysis using laser spectroscopic techniques: Breath biomarkers, spectral fingerprints, and detection limits. Sensors 9, 8230–8262 (2009).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Musio, F. & Ferrara, M. C. Low frequency a.c. response of polypyrrole gas sensors. Sens. Actuator B Chem. 41, 97–103 (1997).

    CAS 
    Article 

    Google Scholar 

  • Bai, H. & Shi, G. Gas sensors based on conducting polymers. Sensors. 7(3), 267–307. https://doi.org/10.3390/s7030267 (2007).

    ADS 
    CAS 
    Article 
    PubMed Central 

    Google Scholar 

  • Wang, Y. et al. Recent advancements in flexible and wearable sensors for biomedical and healthcare applications. J. Phys. D Appl. Phys. https://doi.org/10.1088/1361-6463/ac3c73 (2021).

    Article 

    Google Scholar 

  • Bene, R., Kiss, G., Perczel, I. V., Meyer, F. A. & Reti, F. Application of quadrupole mass spectrometer for the analysis of near-surface gas composition during DC sensor-tests. Vacuum 50, 331–337 (1998).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Ronot, C., Archenault, M., Gagnaire, H. & Goure, J. P. Detection of chemical vapors with a specifically coated optical-fiber sensor. Sens. Actuator B Chem. 11, 375–381 (1993).

    CAS 
    Article 

    Google Scholar 

  • Dickinson, T. et al. A chemical-detecting system based on a cross-reactive optical sensor array. Nature 382, 697–700. https://doi.org/10.1038/382697a0 (1996).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Anno, Y., Maekawa, T., Tamaki, J., Asano, Y. & Hayashi, K. Zinc-oxide-based semiconductor sensors for detecting acetone and capronaldehyde in the vapor of consomm´e soup. Sens. Actuator B Chem. 24, 623–627 (1995).

    Article 

    Google Scholar 

  • Neri, G., Bonavita, A., Micali, G. & Donato, N. Design and development of a breath acetone MOS sensor for ketogenic diets control. IEEE Sens. J. 10(1), 131–136. https://doi.org/10.1109/JSEN.2009.2035663 (2010).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Barko, G. & Hlavay, J. Application of principal component analysis for the characterisation of a piezoelectric sensors array. Anal. Chim. Acta 367, 135–143 (1998).

    CAS 
    Article 

    Google Scholar 

  • Barkó, G., Abonyi, J. & Hlavay, J. Application of fuzzy clustering and piezoelectric chemical sensor array for investigation on organic compounds. Anal. Chim. Acta 398(2–3), 219–226. https://doi.org/10.1016/S0003-2670(99)00377-3 (1999).

    Article 

    Google Scholar 

  • Ahmed, H., Daoudi, A. & Laroussi, K. Application of fuzzy fault detection and isolation approach to the compression system surge. ACTA Press Control Intell. Syst. 39(3), 151–158 (2011).

    MATH 

    Google Scholar 

  • Liu, B., Zhuang, J. & Wei, G. Recent advances in the design of colorimetric sensors for environmental monitoring. Environ. Sci. 7, 2195–2213 (2020).

    CAS 

    Google Scholar 

  • Wang, D. I. et al. Colorimetric sensor for online accurate detection of breath acetone. ACS Sens. https://doi.org/10.1021/acssensors.0c02025 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, L., Qin, H., Song, P., Hu, J. & Jiang, M. Electric properties and acetone sensing characteristics of La1−xPbxFeO3 perovskite system. Mater. Chem. Phys. 98, 358–362 (2006).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Liu, X., Hu, J., Cheng, B., Qin, H. & Jiang, M. Acetone gas sensing properties of SmFe1−xMgxO3 perovskite oxides. Sens. Actuators B Chem. 134, 483–487 (2008).

    CAS 
    Article 

    Google Scholar 

  • Yang, M., Huo, L. H., Zhao, H., Gao, S. & Rong, Z. M. Electrical properties and acetone-sensing characteristics of LaNi1−xTixO3 perovskite system prepared by amorphous citrate decomposition. Sens. Actuators B Chem. 143, 111–118 (2009).

    Article 

    Google Scholar 

  • Zhao, J., Huo, L. H., Gao, S., Zhao, H. & Zhao, J. G. Alcohols and acetone sensing properties of SnO2 thin films deposited by dip-coating. Sens. Actuators B Chem. 115, 460–464 (2006).

    CAS 
    Article 

    Google Scholar 

  • Patil, S. B., Patil, P. P. & More, M. A. Acetone vapour sensing characteristics of cobalt-doped SnO2 thin films. Sens. Actuators B Chem. 125, 126–130 (2007).

    CAS 
    Article 

    Google Scholar 

  • Qin, L. et al. Template-free synthesis of square shaped SnO2 nanowires: the temperature effect and acetone gas sensors. Nanotechnology 19, 185705 (2008).

    ADS 
    Article 

    Google Scholar 

  • Manolis, A. The diagnostic potential of breath analysis. Clin. Chem. 29(1), 5–15. https://doi.org/10.1093/clinchem/29.1.5 (1983).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Röck, F., Barsan, N. & Weimar, U. Electronic nose: Current status and future trends. Chem. Rev. 108, 705–725 (2008).

    Article 

    Google Scholar 

  • Broza, Y. Y. & Haick, H. Nanomaterial-based sensors for detection of disease by volatile organic compounds. Nanomedicine 8, 785–806 (2013).

    CAS 
    Article 

    Google Scholar 

  • Saasa, V. et al. Sensing technologies for detection of acetone in human breath for diabetes diagnosis and monitoring. Diagnostics 8(1), 12. https://doi.org/10.3390/diagnostics8010012 (2018).

    CAS 
    Article 
    PubMed Central 

    Google Scholar 

  • Landini, B., Cranley, P., McIntyre, J. Diet and exercise effects on breath acetone concentration measured using an enzymatic electrochemical sensor, presented at the Obesity Society, Annu. Scientific Meeting, New Orleans, LA, paper 719-P (2007).

  • Landini, B. & Bravard, S. Breath acetone concentration measured using a palm-size enzymatic sensor system. IEEE Sens. J. 9(12), 1802–1807. https://doi.org/10.1109/jsen.2009.2033305 (2009).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Rathee, K., Dhull, V., Dhull, R. & Singh, S. Biosensors based on electrochemical lactate detection: A comprehensive review. Biochem. Biophys. Rep. 5, 35–54. https://doi.org/10.1016/j.bbrep.2015.11.010 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Usman, F. et al. A review of biosensors for non-invasive diabetes monitoring and screening in human exhaled breath. IEEE Access 7, 5963–5974. https://doi.org/10.1109/access.2018.2887066 (2019).

    Article 

    Google Scholar 

  • Pohanka, M. & Skládal, P. Electrochemical biosensors—Principles and applications. J. Appl. Biomed. 6(2), 57–64. https://doi.org/10.32725/jab.2008.008 (2008).

    CAS 
    Article 

    Google Scholar 

  • Wong, Y. C., Ang, B., Haseeb, B., Aainaa, A. & Wong, Y. H. Review—Conducting polymers as chemiresistive gas sensing materials: A review. J. Electrochem. Soc. 167, 037503. https://doi.org/10.1149/2.0032003JES (2020).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Sakthivel, M. & Weppner, W. Electrode kinetics of amperometric hydrogen sensors for hydrogen detection at low parts per million level. J. Solid State Electrochem. 11, 561–570. https://doi.org/10.1007/s10008-006-0195-y (2007).

    CAS 
    Article 

    Google Scholar 

  • Yan, D. et al. Electrochemical synthesis of ZnO nanorods/porous silicon composites and their gas-sensing properties at room temperature. J. Solid State Electrochem. 20, 459–468. https://doi.org/10.1007/s10008-015-3058-6 (2016).

    CAS 
    Article 

    Google Scholar 

  • Dalawai, S. P. et al. Influence of Ni2+ and Sn4+ substitution on gas sensing behaviour of zinc ferrite thick films. J. Solid State Electrochem. 20, 2363–2372. https://doi.org/10.1007/s10008-016-3254-z (2016).

    CAS 
    Article 

    Google Scholar 

  • Landini, B. E. & Bravard, S. T. Effect of exhalation variables on the current response of an enzymatic breath acetone sensing device. IEEE Sens. J. 10(1), 19–24. https://doi.org/10.1109/JSEN.2009.2035760 (2010).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Perini, N. et al. Mechanistic aspects of the comparative oscillatory electrochemical oxidation of formic acid and methanol on platinum electrode. J. Solid State Electrochem. 24, 1811–1818. https://doi.org/10.1007/s10008-020-04609-y (2020).

    CAS 
    Article 

    Google Scholar 

  • Berkes, B. B. & Inzelt, G. Generation and electrochemical nanogravimetric response of the third anodic hydrogen peak on a platinum electrode in sulfuric acid media. J. Solid State Electrochem. 18, 1239–1249. https://doi.org/10.1007/s10008-013-2164-6 (2014).

    CAS 
    Article 

    Google Scholar 

  • Arán-Ais, R. M., Herrero, E. & Feliu, J. M. Thermodynamic studies of anion adsorption at the Pt(111) electrode surface from glycolic acid solutions. J. Solid State Electrochem. 19, 13–21. https://doi.org/10.1007/s10008-014-2646-1 (2015).

    CAS 
    Article 

    Google Scholar 

  • Jehnert, D. et al. The effect of platinum electrode surfaces on precise primary pH measurements. J. Solid State Electrochem. 23, 485–495. https://doi.org/10.1007/s10008-018-4144-3 (2019).

    CAS 
    Article 

    Google Scholar 

  • Chen, S. H. Wither the concepts of mole and concentration: Conceptual confusion in applying M1V1 = M2V2. Univ. J. Educ. Res. 4, 1158–1162. https://doi.org/10.13189/ujer.2016.040527 (2016).

    ADS 
    Article 

    Google Scholar 

  • de Hemptinne, X. & Schunck, K. Electrochemical reduction of acetone. Electrocatalytic activity of platinized platinum. Trans. Faraday Soc. 65, 591–597 (1969).

    Article 

    Google Scholar 

  • Bänsch, B., Härtung, Th., Baltruschat, H., Baltruschat, H. & Heitbaum, J. Reduction and oxidation of adsorbed acetone at platinum electrodes studied by DEMS. J. Electroanal. Chem. 259(1–2), 207–215. https://doi.org/10.1016/0022-0728(89)80048-8 (1989).

    Article 

    Google Scholar 

  • Related posts:

    1. Predicting tissue-specific gene expression from complete blood transcriptome
    2. MRI biomarker to foretell LNM in T3 stage rectal carcinoma
    3. Medical Components Related to Excessive Glycemic Variability Outlined by
    4. Significance of RDW in predicting mortality in COVID‐19—An evaluation of 622 circumstances – Soni – – Worldwide Journal of Laboratory Hematology

    Categories

    • Coefficient of Variation
    • Debt
    • MSCIWI
    • Nasdaq
    • Temporal
    • Terms and Conditions
    • Privacy Policy